Neural network learning with global heuristic search
- PMID: 17526362
- DOI: 10.1109/TNN.2007.891633
Neural network learning with global heuristic search
Abstract
A novel hybrid global optimization (GO) algorithm applied for feedforward neural networks (NNs) supervised learning is investigated. The network weights are determined by minimizing the traditional mean square error function. The optimization technique, called LP(tau)NM, combines a novel global heuristic search based on LPtau low-discrepancy sequences of points, and a simplex local search. The proposed method is initially tested on multimodal mathematical functions and subsequently applied for training moderate size NNs for solving popular benchmark problems. Finally, the results are analyzed, discussed, and compared with such as from backpropagation (BP) (Levenberg-Marquardt) and differential evolution methods.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
