New insights into the colonization and release processes of Xenorhabdus nematophila and the morphology and ultrastructure of the bacterial receptacle of its nematode host, Steinernema carpocapsae
- PMID: 17526783
- PMCID: PMC1951000
- DOI: 10.1128/AEM.02947-06
New insights into the colonization and release processes of Xenorhabdus nematophila and the morphology and ultrastructure of the bacterial receptacle of its nematode host, Steinernema carpocapsae
Abstract
We present results from epifluorescence, differential interference contrast, and transmission electron microscopy showing that Xenorhabdus nematophila colonizes a receptacle in the anterior intestine of the infective juvenile (IJ) stage of Steinernema carpocapsae. This region is connected to the esophagus at the esophagointestinal junction. The process by which X. nematophila leaves this bacterial receptacle had not been analyzed previously. In this study we monitored the movement of green fluorescent protein-labeled bacteria during the release process. Our observations revealed that Xenorhabdus colonizes the distal region of the receptacle and that exposure to insect hemolymph stimulated forward movement of the bacteria to the esophagointestinal junction. Continued exposure to hemolymph caused a narrow passage in the distal receptacle to widen, allowing movement of Xenorhabdus down the intestine and out the anus. Efficient release of both the wild type and a nonmotile strain was evident in most of the IJs incubated in hemolymph, whereas only a few IJs incubated in nutrient-rich broth released bacterial cells. Incubation of IJs in hemolymph treated with agents that induce nematode paralysis dramatically inhibited the release process. These results suggest that bacterial motility is not required for movement out of the distal region of the receptacle and that hemolymph-induced esophageal pumping provides a force for the release of X. nematophila out of the receptacle and into the intestinal lumen.
Figures







Similar articles
-
The Steinernema carpocapsae intestinal vesicle contains a subcellular structure with which Xenorhabdus nematophila associates during colonization initiation.Cell Microbiol. 2005 Dec;7(12):1723-35. doi: 10.1111/j.1462-5822.2005.00585.x. Cell Microbiol. 2005. PMID: 16309459
-
Analysis of Xenorhabdus nematophila metabolic mutants yields insight into stages of Steinernema carpocapsae nematode intestinal colonization.Mol Microbiol. 2005 Oct;58(1):28-45. doi: 10.1111/j.1365-2958.2005.04742.x. Mol Microbiol. 2005. PMID: 16164547
-
Stages of infection during the tripartite interaction between Xenorhabdus nematophila, its nematode vector, and insect hosts.Appl Environ Microbiol. 2004 Nov;70(11):6473-80. doi: 10.1128/AEM.70.11.6473-6480.2004. Appl Environ Microbiol. 2004. PMID: 15528508 Free PMC article.
-
They've got a ticket to ride: Xenorhabdus nematophila-Steinernema carpocapsae symbiosis.Curr Opin Microbiol. 2007 Jun;10(3):225-30. doi: 10.1016/j.mib.2007.05.006. Epub 2007 Jun 5. Curr Opin Microbiol. 2007. PMID: 17553732 Review.
-
Mutualism and pathogenesis in Xenorhabdus and Photorhabdus: two roads to the same destination.Mol Microbiol. 2007 Apr;64(2):260-8. doi: 10.1111/j.1365-2958.2007.05671.x. Mol Microbiol. 2007. PMID: 17493120 Review.
Cited by
-
Host-Specific Activation of Entomopathogenic Nematode Infective Juveniles.Insects. 2018 Jun 2;9(2):59. doi: 10.3390/insects9020059. Insects. 2018. PMID: 29865224 Free PMC article.
-
NilD CRISPR RNA contributes to Xenorhabdus nematophila colonization of symbiotic host nematodes.Mol Microbiol. 2014 Sep;93(5):1026-42. doi: 10.1111/mmi.12715. Epub 2014 Aug 6. Mol Microbiol. 2014. PMID: 25041533 Free PMC article.
-
Ready or Not: Microbial Adaptive Responses in Dynamic Symbiosis Environments.J Bacteriol. 2017 Jul 11;199(15):e00883-16. doi: 10.1128/JB.00883-16. Print 2017 Aug 1. J Bacteriol. 2017. PMID: 28484049 Free PMC article. Review.
-
The entomopathogenic bacterial endosymbionts Xenorhabdus and Photorhabdus: convergent lifestyles from divergent genomes.PLoS One. 2011;6(11):e27909. doi: 10.1371/journal.pone.0027909. Epub 2011 Nov 18. PLoS One. 2011. PMID: 22125637 Free PMC article.
-
Trade-off between reproductive and anti-competitor abilities in an insect-parasitic nematode-bacteria symbiosis.Ecol Evol. 2018 Oct 18;8(22):10847-10856. doi: 10.1002/ece3.4538. eCollection 2018 Nov. Ecol Evol. 2018. PMID: 30519411 Free PMC article.
References
-
- Akhurst, R. J. 1982. Antibiotic activity of Xenorhabdus spp., bacteria symbiotically associated with insect pathogenic nematodes of the families Heterorhabditidae and Steinernematidae. J. Gen. Microbiol. 128:3061-3065. - PubMed
-
- Akhurst, R. J. 1983. Neoaplectana species: specificity of association with bacteria of the genus Xenorhabdus. Exp. Parasitol. 55:258-263. - PubMed
-
- Akhurst, R. J., and N. E. Boemare. 1990. Biology and taxonomy of Xenorhabdus, p. 75-90. In R. Gaugler and H. K. Kaya (ed.), Entomopathogenic nematodes in biological control. CRC Press, Boca Raton, FL.
-
- Bird, A. F., and R. J. Akhurst. 1983. The nature of the intestinal vesicle in nematodes of the family Steinernematidae. Int. J. Parasitol. 16:511-518.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Molecular Biology Databases