Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Aug;46(8):1258-62.
doi: 10.1093/rheumatology/kem104. Epub 2007 May 27.

Decreased bone strength in HLA-B27 transgenic rat model of spondyloarthropathy

Affiliations

Decreased bone strength in HLA-B27 transgenic rat model of spondyloarthropathy

M P Akhter et al. Rheumatology (Oxford). 2007 Aug.

Abstract

Objective: To investigate the nature of osteopenia/osteoporosis in spondyloarthropathy, an inflammatory disorder, using the HLA-B27 transgenic rat model.

Methods: HLA-B27 transgenic rats were housed individually and sacrificed at the peak of their disease (8-month-old). The spine and femurs were removed and stored in saline at -20 degrees C until analysis. The bone structure and strength were determined using a micro-computed tomography (micro-CT) device (Scanco Medical) and mechanical testing (Instron 5543). Vertebral bodies and femurs were scanned to determine trabecular structural properties in terms of bone volume (BV/TV), trabecular thickness, and spacing. After scanning, the mid-shaft femurs were subjected to a 3-point bending test (along anterior-posterior direction), the femoral necks were tested in bending, and the vertebral bodies (L4) were tested in compression. Structural (ultimate/yield load, stiffness) and apparent material (ultimate/yield stress, modulus) strength parameters were then determined.

Results: The majority of the bone structural and strength parameters were significantly lower (P < 0.05) in the HLA-B27 transgenic rats as compared with control littermates. Micro-CT data suggested that the transgenic animals had lower BV/TV and trabecular thickness in their vertebral bodies. The poor trabecular structure observed in HLA-B27 rats is also indicative of the poor biomechanical strength properties in the vertebral bodies as well.

Conclusion: The HLA-B27 transgenic rats develop bone fragility similar to that seen in spondyloarthropathy and may be an important model for the study of osteoporosis in spondyloarthropathy.

PubMed Disclaimer

Substances