Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Jun 13;420(2):184-8.
doi: 10.1016/j.neulet.2007.05.009. Epub 2007 May 10.

3,4-dihydroxybenzoic acid from Smilacis chinae rhizome protects amyloid beta protein (25-35)-induced neurotoxicity in cultured rat cortical neurons

Affiliations

3,4-dihydroxybenzoic acid from Smilacis chinae rhizome protects amyloid beta protein (25-35)-induced neurotoxicity in cultured rat cortical neurons

Ju Yeon Ban et al. Neurosci Lett. .

Abstract

The neuroprotective effect of 3,4-dihydroxybenzoic acid (3,4-DHBA) isolated from Smilacis chinae rhizome against Abeta (25-35)-induced neurotoxicity on cultured rat cortical neurons was found in this study. The protective effect of 3,4-DHBA against Abeta (25-35)-induced neuronal cell death was investigated by measuring cell viability via a 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT) assay and Hoechst 33342 staining. 3,4-DHBA (1 and 10 microM) concentration-dependently inhibited 10 microM Abeta (25-35)-induced neuronal apoptotic death. 3,4-DHBA (1 and 10 microM) inhibited 10 microM Abeta (25-35)-induced elevation of cytosolic Ca(2+) concentration ([Ca(2+)](c)), which was measured by a fluorescent dye, Fluo-4 AM. 3,4-DHBA also inhibited glutamate release into medium, reactive oxygen species (ROS) generation, and caspase-3 activation, which were induced by 10 microM Abeta (25-35). These results suggest that 3,4-DHBA prevents Abeta (25-35)-induced neuronal cell damage by interfering with the increase of [Ca(2+)](c), and then by inhibiting glutamate release, generation of ROS and caspase-3 activity.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources