Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Sep;3(5):643-50.
doi: 10.1016/j.actbio.2007.03.012. Epub 2007 May 25.

A dual-functional fibrous scaffold enhances P450 activity of cultured primary rat hepatocytes

Affiliations

A dual-functional fibrous scaffold enhances P450 activity of cultured primary rat hepatocytes

Kian-Ngiap Chua et al. Acta Biomater. 2007 Sep.

Abstract

We have designed a novel dual-functional electrospun fibrous scaffold comprising two fiber mesh layers that were modified differently to induce two separate biological responses from hepatocytes. The first fiber layer was galactosylated on the surface to mediate hepatocyte attachment, while the second layer was loaded with 3-methylcholanthrene (3-Mc) to enhance cytochrome P450 activity of hepatocytes. Primary rat hepatocytes cultured on the galactosylated fibrous scaffolds loaded with different concentrations of 3-Mc were compared for their cell attachment efficiency, albumin secretion activity and cytochrome P450-dependent 7-ethoxycoumarin O-deethylase activity. This hybrid fibrous scaffold mediated hepatocyte attachment with slightly lower efficiency (76+/-2.3%) than a single-layer galactosylated fibrous scaffold (84+/-3.5%). More importantly, the cytochrome P450 activity of the hepatocytes cultured on the hybrid scaffold correlated well with the 3-Mc loading level. The results also showed that transfer of 3-Mc to hepatocytes through direct cell-fiber contact was the dominant transport route, with the induced cytochrome P450 activity being 1.9- to 4.8-fold higher than that of transfer of 3-Mc to hepatocytes via dissolution from fibers to medium. This study demonstrates the feasibility of creating multi-functional fibrous scaffolds that serve both as an adhesive substrate and as a delivery vehicle for bioactive molecules.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources