Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Aug;97(2):123-36.
doi: 10.1007/s00422-007-0159-z. Epub 2007 May 30.

Feedback control of the limbs position during voluntary rhythmic oscillation

Affiliations

Feedback control of the limbs position during voluntary rhythmic oscillation

Roberto Esposti et al. Biol Cybern. 2007 Aug.

Abstract

The mechanisms that control the limbs position during rhythmic voluntary oscillations were investigated in ten subjects, who were asked to synchronise the lower peak of their hand or foot rhythmic oscillations to a metronome beat. The efficacy of the "position control" was estimated by measuring the degree of synchronisation between the metronome signal and the requested limb position and how it was affected by changing both the oscillation frequency (between 0.4 and 3.0 Hz) and the limbs inertial properties. With the limbs unloaded, the lower peak of both the hand and foot oscillations lagged the metronome beat of a slight amount that remained constant over the whole frequency range (mean phase delay -13.2 degrees for the hand and -4.7 degrees for the foot). The constancy was obtained by phase-advancing, at each frequency increment, the electromyogram (EMG) activation with respect of the clock beat of the amount necessary to compensate for the simultaneous increase of the lag between the EMG and the movement, produced by the limb mechanical impedance. After loading of either limb, the increase of the oscillation frequency induced larger EMG-movement delays and the anticipatory compensation became insufficient, so that the movement progressively phase-lagged the clock beat. The above results have been accurately simulated by a neural network connected to a pendulum model that shared the same mechanical properties of the moving limb. The network compares a central command (the intended position) to the actual position of the effector and acts as a closed-loop proportional, integrative and derivative controller. It is proposed that the synchronisation of rhythmic oscillations of either the hand or the foot is sustained by a feed-back control that conforms the position of each limb to that encoded in the central voluntary command.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources