Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Jul 20;282(29):20799-803.
doi: 10.1074/jbc.C700095200. Epub 2007 May 29.

Catalytic activity is not required for secreted PCSK9 to reduce low density lipoprotein receptors in HepG2 cells

Affiliations
Free article

Catalytic activity is not required for secreted PCSK9 to reduce low density lipoprotein receptors in HepG2 cells

Markey C McNutt et al. J Biol Chem. .
Free article

Abstract

Proprotein convertase subtilisin/kexin type 9 (PCSK9), a member of the proteinase K subfamily of subtilases, promotes internalization and degradation of low density lipoprotein receptors (LDLRs) after binding the receptor on the surface of hepatocytes. PCSK9 has autocatalytic activity that releases the prodomain at the N terminus of the protein. The prodomain remains tightly associated with the catalytic domain as the complex transits the secretory pathway. It is not known whether enzymatic activity is required for the LDLR-reducing effects of PCSK9. Here we expressed the prodomain together with a catalytically inactive protease domain in cells and purified the protein from the medium. The ability of the catalytically inactive PCSK9 to bind and degrade LDLRs when added to culture medium of human hepatoma HepG2 cells at physiological concentrations was similar to that seen using wild-type protein. Similarly, a catalytic-dead version of a gain-of-function mutant, PCSK9(D374Y), showed no loss of activity compared with a catalytically active counterpart; both proteins displayed approximately 10-fold increased activity in degradation of cell surface LDLRs compared with wild-type PCSK9. We conclude that the ability of PCSK9 to degrade LDLRs is independent of catalytic activity and suggest that PCSK9 functions as a chaperone to prevent LDLR recycling and/or to target LDLRs for lysosomal degradation.

PubMed Disclaimer

Publication types

LinkOut - more resources