Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Jun;7(6):695-701.
doi: 10.1039/b618583e. Epub 2007 Mar 28.

Survival, migration and differentiation of retinal progenitor cells transplanted on micro-machined poly(methyl methacrylate) scaffolds to the subretinal space

Affiliations

Survival, migration and differentiation of retinal progenitor cells transplanted on micro-machined poly(methyl methacrylate) scaffolds to the subretinal space

Sarah Tao et al. Lab Chip. 2007 Jun.

Abstract

Stem and progenitor cells can be combined with polymer substrates to generate tissue equivalents in culture. The replacement of retinal tissue lost to disease or trauma using retinal progenitor cells (RPCs) delivered on polymer scaffolds and transplanted into the sub-retinal space of the damaged retina is a promising therapeutic strategy. Micromachining-based, ultra-thin PMMA poly(methyl methacrylate) scaffolds may provide a suitable cytoarchitectural environment for tissue engineering and transplantation to the diseased eye. Here, adhesion of RPCs to polymer, as well as migration and differentiation in the host retina were compared for PMMA scaffolds (6 microm thickness) with either smooth or porous (11 microm diameter) surface topography. RPCs were cultured under identical conditions on smooth or porous laminin-coated polymer scaffolds and transplanted into the subretinal space of C57BL/6 mice. RPCs could be cultured on both scaffolds with similar results, although transplantation with non-porous scaffolds showed limited RPC retention. Porous scaffolds demonstrated enhanced RPC adherence during transplantation and allowed for greater process outgrowth and cell migration into the host retinal layers. Integrated cells expressed the mature neuronal marker neurofilament-200 (nf-200), the glial marker glial fibrillary acidic protein (GFAP) and the retinal-specific marker recoverin. No host foreign body response was seen. In conclusion, ultra-thin film PMMA scaffolds micromachined to contain through pores retain adherent RPCs to a considerably greater extent than unmachined versions during the transplantation process and can serve as a biocompatible substrate for cell delivery in vivo.

PubMed Disclaimer

Publication types

LinkOut - more resources