Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Sep;3(5):663-8.
doi: 10.1016/j.actbio.2007.03.004. Epub 2007 May 30.

Surface-dependent fibrinopeptide A accessibility to thrombin

Affiliations

Surface-dependent fibrinopeptide A accessibility to thrombin

Carri B Geer et al. Acta Biomater. 2007 Sep.

Abstract

Fibrinogen adsorption and more recently fibrin formation at interfaces has been reported to depend on surface properties of the underlying substrate. To provide insight into the surface-dependent mechanism of fibrinopeptide A (FpA) release and fibrin formation, the accessibility and susceptibility of FpA to thrombin-catalyzed fibrinopeptide cleavage were examined using polyclonal anti-FpA IgG binding and surface plasmon resonance (SPR). The amount of accessible FpA on adsorbed fibrinogen was significantly influenced by surface properties of the underlying substrate (methyl- and carboxyl-terminated self-assembled monolayers). Roughly 2.7 times more FpA was available on fibrinogen adsorbed at the hydrophobic vs. negatively charged surface. Upon exposure of adsorbed fibrinogen to thrombin, 100% of the available FpA was enzymatically cleaved at both surfaces, indicating that the extent of FpA release and fibrin formation is a function of the surface-dependent FpA availability. The results presented herein suggest negatively charged surfaces impair FpA accessibility, and therefore lead to reduced FpA release and subsequent fibrin formation. As such, negatively charged surfaces may be useful in minimizing surface-induced thrombosis initiated via fibrin formation thereby aiding in the development of more biocompatible blood-contacting devices.

PubMed Disclaimer

Publication types

LinkOut - more resources