Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Aug;27(8):1744-51.
doi: 10.1161/ATVBAHA.107.147371. Epub 2007 May 31.

Mechanical stretch simulates proliferation of venous smooth muscle cells through activation of the insulin-like growth factor-1 receptor

Affiliations

Mechanical stretch simulates proliferation of venous smooth muscle cells through activation of the insulin-like growth factor-1 receptor

Jizhong Cheng et al. Arterioscler Thromb Vasc Biol. 2007 Aug.

Abstract

Objective: Activation and proliferation of vascular smooth muscle cells (VSMCs) occur in the venous neointima of vein grafts. VSMCs in a grafted vein are subjected to mechanical stretch; our goal is to understand the essential mechanical stretch-regulated signals that influence VSMCs during neointimal formation in vein grafts.

Methods and results: In cultured vein VSMCs, mechanical stretch induces proliferation and upregulation of both IGF-1 and IGF-1R. Stretch of VSMCs sustained tyrosine phosphorylation of both IGF-1R and its substrate, IRS-1; these responses were related to mechanical stretch-induced activation of Src and autocrine IGF-1 production. Mechanical stretch-activated IGF-1R is functional because there is a prolonged activation of IRS-1-associated phosphatidylinositol-3 kinase (PI3K). When we knocked out IGF-1R, the mechanical stretch-induced increase in VSMC proliferation was blocked. To link mechanical stretch-activated IGF-1R cell signaling to venous VSMC proliferation in vivo, we also studied a vein graft model. Tamoxifen-inducible null deletion of IGF-1R in mice reduced the formation of neointima in the vein graft.

Conclusions: Our results demonstrate for the first time that mechanical stretch activates IGF-1/IGF-1R signals in venous VSMCs, and we have uncovered a signaling pathway that leads to neointima formation in vivo.

PubMed Disclaimer

Comment in

Publication types

MeSH terms

Substances

LinkOut - more resources