Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Sep;28(3):270-7.
doi: 10.1097/shk.0b013e3180485acd.

Hypoxia activates c-Jun N-terminal kinase via Rac1-dependent reactive oxygen species production in hepatocytes

Affiliations

Hypoxia activates c-Jun N-terminal kinase via Rac1-dependent reactive oxygen species production in hepatocytes

Kevin P Mollen et al. Shock. 2007 Sep.

Abstract

The earliest events after the induction of hemorrhagic shock (HS) are complex and poorly understood. We have recently demonstrated that decreased tissue perfusion and hypoxia during HS lead to an increased phosphorylation of c-Jun N-terminal kinase (JNK) in vivo. The purpose of these investigations was to test the hypothesis that hypoxia activates JNK via Rac1-dependent reactive oxygen species (ROS) signaling. Mice subjected to HS and resuscitated with Ringer's ethyl pyruvate solution (REPS) or N-acetylcysteine (NAC), two scavengers of ROS, demonstrated decreased levels of phosphorylated JNK. Exposure of primary mouse hepatocytes in culture to 1% oxygen led to increased production of ROS and phosphorylation of JNK. The duration of hypoxia correlated with the level of generation of ROS and JNK activation. The phosphorylation of JNK was attenuated in the presence of ROS scavengers or the nicotinamide adenosine dinucleotide phosphate [NDA(P)H] oxidase inhibitor, diphenyleneiodonium (DPI). In addition, hypoxia increased activation of Rac1. Inhibition of Rac1 activation by adenoviral gene transfer of dominant-negative Rac1 (AdRac1) attenuated both ROS formation and JNK activation. Together, these data suggest that ROS generation during hypoxia in the liver directly leads to JNK activation in a Rac1-dependent process.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources