Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Jun 15;178(12):7849-58.
doi: 10.4049/jimmunol.178.12.7849.

Low-dose peptide tolerance therapy of lupus generates plasmacytoid dendritic cells that cause expansion of autoantigen-specific regulatory T cells and contraction of inflammatory Th17 cells

Affiliations

Low-dose peptide tolerance therapy of lupus generates plasmacytoid dendritic cells that cause expansion of autoantigen-specific regulatory T cells and contraction of inflammatory Th17 cells

Hee-Kap Kang et al. J Immunol. .

Abstract

Subnanomolar doses of an unaltered, naturally occurring nucleosomal histone peptide epitope, H4(71-94), when injected s.c. into lupus-prone mice, markedly prolong lifespan by generating CD4+25+ and CD8+ regulatory T cells (Treg) producing TGF-beta. The induced Treg cells suppress nuclear autoantigen-specific Th and B cells and block renal inflammation. Splenic dendritic cells (DC) captured the s.c.-injected H4(71-94) peptide rapidly and expressed a tolerogenic phenotype. The DC of the tolerized animal, especially plasmacytoid DC, produced increased amounts of TGF-beta, but diminished IL-6 on stimulation via the TLR-9 pathway by nucleosome autoantigen and other ligands; and those plasmacytoid DC blocked lupus autoimmune disease by simultaneously inducing autoantigen-specific Treg and suppressing inflammatory Th17 cells that infiltrated the kidneys of untreated lupus mice. Low-dose tolerance with H4(71-94) was effective even though the lupus immune system is spontaneously preprimed to react to the autoepitope. Thus, H4(71-94) peptide tolerance therapy that preferentially targets pathogenic autoimmune cells could spare lupus patients from chronically receiving toxic agents or global immunosuppressants and maintain remission by restoring autoantigen-specific Treg cells.

PubMed Disclaimer

Publication types

MeSH terms