Species-specific in vitro pharmacological effects of the cannabinoid receptor 2 (CB2) selective ligand AM1241 and its resolved enantiomers
- PMID: 17549048
- PMCID: PMC2042933
- DOI: 10.1038/sj.bjp.0707303
Species-specific in vitro pharmacological effects of the cannabinoid receptor 2 (CB2) selective ligand AM1241 and its resolved enantiomers
Erratum in
- Br J Pharmacol. 2007 Aug;151(7):1137
Abstract
Background and purpose: Racemic (R,S) AM1241 is a cannabinoid receptor 2 (CB(2))-selective aminoalkylindole with antinociceptive efficacy in animal pain models. The purpose of our studies was to provide a characterization of R,S-AM1241 and its resolved enantiomers in vitro and in vivo.
Experimental approach: Competition binding assays were performed using membranes from cell lines expressing recombinant human, rat, and mouse CB(2) receptors. Inhibition of cAMP was assayed using intact CB(2)-expressing cells. A mouse model of visceral pain (para-phenylquinone, PPQ) and a rat model of acute inflammatory pain (carrageenan) were employed to characterize the compounds in vivo.
Key results: In cAMP inhibition assays, R,S-AM1241 was found to be an agonist at human CB(2), but an inverse agonist at rat and mouse CB(2) receptors. R-AM1241 bound with more than 40-fold higher affinity than S-AM1241, to all three CB(2) receptors and displayed a functional profile similar to that of the racemate. In contrast, S-AM1241 was an agonist at all three CB(2) receptors. In pain models, S-AM1241 was more efficacious than either R-AM1241 or the racemate. Antagonist blockade demonstrated that the in vivo effects of S-AM1241 were mediated by CB(2) receptors.
Conclusions and implications: These findings constitute the first in vitro functional assessment of R,S-AM1241 at rodent CB(2) receptors and the first characterization of the AM1241 enantiomers in recombinant cell systems and in vivo. The greater antinociceptive efficacy of S-AM1241, the functional CB(2) agonist enantiomer of AM1241, is consistent with previous observations that CB(2) agonists are effective in relief of pain.
Figures
References
-
- Baker D, Pryce G, Davies WL, Hiley CR. In silico patent searching reveals a new cannabinoid receptor. Trends Pharmacol Sci. 2006;27:1–4. - PubMed
-
- Beltramo M, Bernardini N, Bertorelli R, Campanella M, Nicolussi E, Fredduzzi S, et al. CB2 receptor-mediated antihyperalgesia: possible direct involvement of neural mechanisms. Eur J Neurosci. 2006;26:1530–1538. - PubMed
-
- Brown SM, Wager-Miller J, Mackie K. Cloning and molecular characterization of the rat CB2 cannabinoid receptor. Biochim Biophys Acta. 2002;1576:255–264. - PubMed
-
- Cabral GA, Marciano-Cabral F. Cannabinoid receptors in microglia of the central nervous system: immune functional relevance. J Leukoc Biol. 2005;78:1192–1197. - PubMed
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
