Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Jul;85(9):1894-911.
doi: 10.1002/jnr.21313.

Phosphorylation of Bcl-xL after spinal cord injury

Affiliations

Phosphorylation of Bcl-xL after spinal cord injury

Diana M Cittelly et al. J Neurosci Res. 2007 Jul.

Abstract

Spinal cord injury (SCI)-induced functional impairment results from secondary apoptosis regulated in part by SCI-induced decreases in the antiapoptotic protein Bcl-x(L). We assessed the role that Bcl-x(L) subcellular rerouting and posttranslational phosphorylation play in Bcl-x(L) decreases in a contusion model of rat SCI. Immunohistochemical analysis showed the presence of Bcl-x(L) in neurons and oligodendrocytes, but not in astrocytes and microglia, whereas phosphorylated Bcl-x(L) (P-ser(62)-Bcl-x(L)) was present only in neurons. Western blot analyses showed Bcl-x(L) present in mitochondria, endoplasmic reticulum, nuclei, and cytosolic extracts, whereas P-ser(62)-Bcl-x(L) was restricted to organelles. During the first 24 hr after SCI, Bcl-x(L) levels decreased in all fractions but with a different time course, suggesting an independent regulation of Bcl-x(L) shuttling from the cytosol to each compartment after SCI. SCI did not affect P-ser(62)-Bcl-x(L) levels in organelles. However, P-ser(62)-Bcl-x(L), which was not detected in the cytosolic fraction of uninjured spinal cord, appeared in the cytosol as early as 15 min postcontusion, suggesting a role for phosphorylation in SCI-induced Bcl-x(L)-decreases. Using an in vitro model, we observed a correlation between levels of cytosolic phosphorylated Bcl-x(L) and neuronal apoptosis, supporting the hypothesis that Bcl-x(L) phosphorylation is proapoptotic. Activated microglia/macrophages robustly expressed Bcl-x(L) 7 days after SCI, and a subpopulation showing nuclear condensation also expressed P-ser(62)-Bcl-x(L). Therefore, phosphorylation of Bcl-x(L) may have opposite effects in injured spinal cords: 1) it may decrease levels of the antiapoptotic Bcl-x(L) in neurons contributing to neuronal death, and 2) it may promote apoptosis in activated microglia/macrophages, thus curtailing the inflammatory cascades associated with SCI.

PubMed Disclaimer

Publication types