Suspension array with shape-coded silica nanotubes for multiplexed immunoassays
- PMID: 17552495
- DOI: 10.1021/ac0704964
Suspension array with shape-coded silica nanotubes for multiplexed immunoassays
Abstract
A suspension array for multiplexed immunoassays has been developed using shape-coded silica nanotubes (SNTs) as coding materials. Fabricated by multistep anodization template synthesis, each shape-coded SNT has several segments with different reflectance values depending on their diameters and wall thicknesses. Therefore, the code of each SNT can be "read-out" under a conventional optical microscope. The suspension array with shape-coded SNTs has shown high stability and dispersibility in aqueous buffer media and high detection sensitivity. The SNTs have not shown any visible degradation while submerged in aqueous solution for 7 months, the tubular structure and silanol groups on the inner and outer surfaces allow SNTs to disperse evenly in buffer solution, and the detection limit of an IgG protein is about 6 pM with 1.5 x 10(6) SNTs per mL. We have demonstrated the high selectivity of the SNTs suspension array for the detection of multianalytes in the multiplexed immunoassay experiments.
Similar articles
-
Shape-coded silica nanotubes for biosensing.Langmuir. 2006 Sep 26;22(20):8263-5. doi: 10.1021/la060187t. Langmuir. 2006. PMID: 16981732
-
Controlled gold nanoparticle diffusion in nanotubes: Platfom of partial functionalization and gold capping.J Am Chem Soc. 2006 Dec 20;128(50):15974-5. doi: 10.1021/ja0663632. J Am Chem Soc. 2006. PMID: 17165716
-
Mechanical capping of silica nanotubes for encapsulation of molecules.J Am Chem Soc. 2009 Nov 4;131(43):15574-5. doi: 10.1021/ja905485s. J Am Chem Soc. 2009. PMID: 19824675
-
Quantum-dot-embedded silica nanotubes as nanoprobes for simple and sensitive DNA detection.Nanotechnology. 2011 Apr 15;22(15):155102. doi: 10.1088/0957-4484/22/15/155102. Epub 2011 Mar 10. Nanotechnology. 2011. PMID: 21389577
-
Template synthesis of multifunctional nanotubes for controlled release.J Control Release. 2006 Aug 28;114(2):143-52. doi: 10.1016/j.jconrel.2006.06.004. Epub 2006 Jun 7. J Control Release. 2006. PMID: 16870299 Review.
Cited by
-
Tunable Fabry-Pérot interferometer based on nanoporous anodic alumina for optical biosensing purposes.Nanoscale Res Lett. 2012 Jul 3;7(1):370. doi: 10.1186/1556-276X-7-370. Nanoscale Res Lett. 2012. PMID: 22759928 Free PMC article.
-
Encoding microcarriers for biomedicine.Smart Med. 2023 Feb 14;2(1):e20220009. doi: 10.1002/SMMD.20220009. eCollection 2023 Feb. Smart Med. 2023. PMID: 39188559 Free PMC article. Review.
-
Nanoporous anodic alumina platforms: engineered surface chemistry and structure for optical sensing applications.Sensors (Basel). 2014 Jul 7;14(7):11878-918. doi: 10.3390/s140711878. Sensors (Basel). 2014. PMID: 25004150 Free PMC article. Review.
-
Identification of fluorescently-barcoded nanoparticles using machine learning.Nanoscale Adv. 2023 Mar 23;5(8):2307-2317. doi: 10.1039/d2na00648k. eCollection 2023 Apr 11. Nanoscale Adv. 2023. PMID: 37056621 Free PMC article.
-
Nanostructural Engineering of Nanoporous Anodic Alumina for Biosensing Applications.Materials (Basel). 2014 Jul 18;7(7):5225-5253. doi: 10.3390/ma7075225. Materials (Basel). 2014. PMID: 28788127 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources