Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 May;13(5):713-8.
doi: 10.3201/eid1305.070013.

Genome analysis linking recent European and African influenza (H5N1) viruses

Affiliations

Genome analysis linking recent European and African influenza (H5N1) viruses

Steven L Salzberg et al. Emerg Infect Dis. 2007 May.

Abstract

To better understand the ecology and epidemiology of the highly pathogenic avian influenza virus in its transcontinental spread, we sequenced and analyzed the complete genomes of 36 recent influenza A (H5N1) viruses collected from birds in Europe, northern Africa, and southeastern Asia. These sequences, among the first complete genomes of influenza (H5N1) viruses outside Asia, clearly depict the lineages now infecting wild and domestic birds in Europe and Africa and show the relationships among these isolates and other strains affecting both birds and humans. The isolates fall into 3 distinct lineages, 1 of which contains all known non-Asian isolates. This new Euro-African lineage, which was the cause of several recent (2006) fatal human infections in Egypt and Iraq, has been introduced at least 3 times into the European-African region and has split into 3 distinct, independently evolving sublineages. One isolate provides evidence that 2 of these sublineages have recently reassorted.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Phylogenetic tree of hemagglutinin (HA) segments from 36 avian influenza samples. A 2001 strain (A/duck/Anyang/AVL-1/2001) is used as an outgroup at top. Clade V1 comprises the 5 Vietnamese isolates at the bottom of the tree, and clade V2 comprises the 9 Vietnamese isolates near the top of the tree. The European-Middle Eastern-African (EMA) clade contains the remaining 22 isolates sequenced in this study; the 3 subclades are indicated by red, blue, and purple lines. The reassortant strain, A/chicken/Nigeria/1047–62/2006, is highlighted in red. Note that 4 segments including HA from this reassortant fall in EMA-1; the other 4 fall in EMA-2, as shown in Appendix Figure 1. Bootstrap values supporting the 3 distinct EMA clades are taken from a consensus tree based on concatenated whole-genome sequences, excluding the reassortant strain. The consensus tree is provided as Appendix Figure 2.
Figure 2
Figure 2
A) Phylogenetic tree relating the influenza A (H5N1) hemagglutinin (HA) segments of 589 avian, feline, and human viruses. The tree includes all HA segments isolated since 2000 from humans (82 isolates, minimum sequence length 1,000 nt), birds (503 isolates, minimum length 1500 nt), and cats (4 isolates). The 36 newly sequenced genomes are highlighted in color. Human cases, which occur in all 4 of the major influenza (H5N1) clades, are highlighted in red. The scale bar indicates an F84 distance of 0.01. A full-scale version of this tree is provided as Figure 3. B) Phylogeny of 71 complete genomes (avian isolates, all 8 segments concatenated) and 3 HA sequences (human isolates, marked with red arrows) from Europe, the Middle East, Africa, Russia, and Asia. Bootstrap values represent the percentage of 1,000 bootstrap replicates for which the partition implied by the edge was observed; see Methods for further details. The 3 European-Middle Eastern-African (EMA) subclades from Figure 1 are indicated with the same color scheme. Isolates from human hosts are found only in EMA-1. Colors indicate locales. The names of the isolates newly sequenced in this study are shown in boldface text.

References

    1. Xu X, Subbarao EK, Cox NJ, Guo Y. Genetic characterization of the pathogenic influenza A/Goose/Guangdong/1/96 (H5N1) virus: similarity of its hemagglutinin gene to those of H5N1 viruses from the 1997 outbreaks in Hong Kong. Virology. 1999;261:15–9. 10.1006/viro.1999.9820 - DOI - PubMed
    1. World Health Organization. Epidemiology of WHO-confirmed human cases of avian influenza A (H5N1) infection. Wkly Epidemiol Rec. 2006;81:249–57. - PubMed
    1. Webster RG, Guan Y, Poon L, Krauss S, Webby R, Govorkovai E, et al. The spread of the H5N1 bird flu epidemic in Asia in 2004. Arch Virol Suppl. 2005;19:117–29. - PubMed
    1. Chen H, Smith GJ, Li KS, Wang J, Fan SH, Rayner JM, et al. Establishment of multiple sublineages of H5N1 influenza virus in Asia: implications for pandemic control. Proc Natl Acad Sci U S A. 2006;103:2845–50. 10.1073/pnas.0511120103 - DOI - PMC - PubMed
    1. Ghedin E, Sengamalay NA, Shumway M, Zaborsky J, Feldblyum T, Subbu V, et al. Large-scale sequencing of human influenza reveals the dynamic nature of viral genome evolution. Nature. 2005;437:1162–6. 10.1038/nature04239 - DOI - PubMed

Publication types

LinkOut - more resources