Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Jul 30;568(1-3):222-30.
doi: 10.1016/j.ejphar.2007.04.047. Epub 2007 May 10.

Combination of VEGF(165)/Angiopoietin-1 gene and endothelial progenitor cells for therapeutic neovascularization

Affiliations

Combination of VEGF(165)/Angiopoietin-1 gene and endothelial progenitor cells for therapeutic neovascularization

Feng Chen et al. Eur J Pharmacol. .

Abstract

Previous studies have established that vascular endothelial growth factor (VEGF), Angiopoietin-1 (Ang1) and endothelial progenitor cells (EPCs) play important roles in neovascularization, suggesting that combination of them would be a promising therapy for ischemic diseases. So we constructed the adeno-associated virus-2 (AAV-2) vectors simultaneously encoding human VEGF(165) and Ang1 (AAV-Ang1/VEGF), and investigated the combination therapeutic effect of AAV-Ang1/VEGF with EPCs in a rabbit ischemic hindlimb model. In the present study we found that AAV-Ang1/VEGF could successfully and efficiently transfer VEGF(165) and Ang1 gene into bone marrow derived EPCs for gene therapy. Combined administration of AAV-Ang1/VEGF with EPCs had higher blood flow recovery, cellularity, capillary density and smooth muscle alpha-actin positive vessel density than administration of either of them alone. Furthermore, the strategy of pre-intramuscular injection of AAV-Ang1/VEGF followed by EPCs transplantation had a higher therapeutic effect than the strategy of transplantation of AAV-Ang1/VEGF transduced EPCs. It seemed that the former strategy may be a promising therapy for ischemic diseases.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms