A biochemical guide to yeast adhesins: glycoproteins for social and antisocial occasions
- PMID: 17554046
- PMCID: PMC1899881
- DOI: 10.1128/MMBR.00037-06
A biochemical guide to yeast adhesins: glycoproteins for social and antisocial occasions
Abstract
Fungi are nonmotile eukaryotes that rely on their adhesins for selective interaction with the environment and with other fungal cells. Glycosylphosphatidylinositol (GPI)-cross-linked adhesins have essential roles in mating, colony morphology, host-pathogen interactions, and biofilm formation. We review the structure and binding properties of cell wall-bound adhesins of ascomycetous yeasts and relate them to their effects on cellular interactions, with particular emphasis on the agglutinins and flocculins of Saccharomyces and the Als proteins of Candida. These glycoproteins share common structural motifs tailored to surface activity and biological function. After being secreted to the outer face of the plasma membrane, they are covalently anchored in the wall through modified GPI anchors, with their binding domains elevated beyond the wall surface on highly glycosylated extended stalks. N-terminal globular domains bind peptide or sugar ligands, with between millimolar and nanomolar affinities. These affinities and the high density of adhesins and ligands at the cell surface determine microscopic and macroscopic characteristics of cell-cell associations. Central domains often include Thr-rich tandemly repeated sequences that are highly glycosylated. These domains potentiate cell-to-cell binding, but the molecular mechanism of such an association is not yet clear. These repeats also mediate recombination between repeats and between genes. The high levels of recombination and epigenetic regulation are sources of variation which enable the population to continually exploit new niches and resources.
Figures



Similar articles
-
Sexual agglutination in budding yeasts: structure, function, and regulation of adhesion glycoproteins.Microbiol Rev. 1992 Mar;56(1):180-94. doi: 10.1128/mr.56.1.180-194.1992. Microbiol Rev. 1992. PMID: 1579109 Free PMC article. Review.
-
Diversity of GPI-anchored fungal adhesins.Biol Chem. 2020 Nov 26;401(12):1389-1405. doi: 10.1515/hsz-2020-0199. Biol Chem. 2020. PMID: 33035180 Review.
-
Mating type-specific cell-cell recognition of Saccharomyces cerevisiae: cell wall attachment and active sites of a- and alpha-agglutinin.EMBO J. 1994 Oct 17;13(20):4737-44. doi: 10.1002/j.1460-2075.1994.tb06799.x. EMBO J. 1994. PMID: 7957044 Free PMC article.
-
Force Sensitivity in Saccharomyces cerevisiae Flocculins.mSphere. 2016 Aug 17;1(4):e00128-16. doi: 10.1128/mSphere.00128-16. eCollection 2016 Jul-Aug. mSphere. 2016. PMID: 27547825 Free PMC article.
-
Establishment of a simple system to analyse the molecular interaction in the agglutination of Saccharomyces cerevisiae.Yeast. 2000 Aug;16(11):995-1000. doi: 10.1002/1097-0061(200008)16:11<995::AID-YEA604>3.0.CO;2-S. Yeast. 2000. PMID: 10923021
Cited by
-
Substrate-specific gene expression in Batrachochytrium dendrobatidis, the chytrid pathogen of amphibians.PLoS One. 2012;7(11):e49924. doi: 10.1371/journal.pone.0049924. Epub 2012 Nov 20. PLoS One. 2012. PMID: 23185485 Free PMC article.
-
New Aspects of Invasive Growth Regulation Identified by Functional Profiling of MAPK Pathway Targets in Saccharomyces cerevisiae.Genetics. 2020 Sep;216(1):95-116. doi: 10.1534/genetics.120.303369. Epub 2020 Jul 14. Genetics. 2020. PMID: 32665277 Free PMC article.
-
Maintaining two mating types: structure of the mating type locus and its role in heterokaryosis in Podospora anserina.Genetics. 2014 May;197(1):421-32. doi: 10.1534/genetics.113.159988. Epub 2014 Feb 20. Genetics. 2014. PMID: 24558260 Free PMC article.
-
A Candida-based view of fungal sex and pathogenesis.Genome Biol. 2009;10(7):230. doi: 10.1186/gb-2009-10-7-230. Epub 2009 Jul 10. Genome Biol. 2009. PMID: 19591662 Free PMC article. Review.
-
Global transcriptome changes underlying colony growth in the opportunistic human pathogen Aspergillus fumigatus.Eukaryot Cell. 2012 Jan;11(1):68-78. doi: 10.1128/EC.05102-11. Epub 2011 Jul 1. Eukaryot Cell. 2012. PMID: 21724936 Free PMC article.
References
-
- Andrews, J., and R. B. Gilliland. 1952. Super-attenuation of beer: a study of three organisms capable of causing abnormal attenuation. J. Inst. Brewing 58:189-196.
-
- Batlle, M., A. Lu, D. A. Green, Y. Xue, and J. P. Hirsch. 2003. Krh1p and Krh2p act downstream of the Gpa2p G(alpha) subunit to negatively regulate haploid invasive growth. J. Cell Sci. 116:701-710. - PubMed
-
- Bayly, J. C., L. M. Douglas, I. S. Pretorius, F. F. Bauer, and A. M. Dranginis. 2005. Characteristics of Flo11-dependent flocculation in Saccharomyces cerevisiae. FEMS Yeast Res. 5:1151-1156. - PubMed
-
- Bidard, F., B. Blondin, S. Dequin, F. Vezinhet, and P. Barre. 1994. Cloning and analysis of a FLO5 flocculation gene from S. cerevisiae. Curr. Genet. 25:196-201. - PubMed
-
- Bidard, F., M. Bony, B. Blondin, S. Dequin, and P. Barre. 1995. The Saccharomyces cerevisiae FLO1 flocculation gene encodes for a cell surface protein. Yeast 11:809-822. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Miscellaneous