Environmental sensing and signal transduction pathways regulating morphopathogenic determinants of Candida albicans
- PMID: 17554048
- PMCID: PMC1899878
- DOI: 10.1128/MMBR.00009-06
Environmental sensing and signal transduction pathways regulating morphopathogenic determinants of Candida albicans
Abstract
Candida albicans is an opportunistic fungal pathogen that is found in the normal gastrointestinal flora of most healthy humans. However, under certain environmental conditions, it can become a life-threatening pathogen. The shift from commensal organism to pathogen is often correlated with the capacity to undergo morphogenesis. Indeed, under certain conditions, including growth at ambient temperature, the presence of serum or N-acetylglucosamine, neutral pH, and nutrient starvation, C. albicans can undergo reversible transitions from the yeast form to the mycelial form. This morphological plasticity reflects the interplay of various signal transduction pathways, either stimulating or repressing hyphal formation. In this review, we provide an overview of the different sensing and signaling pathways involved in the morphogenesis and pathogenesis of C. albicans. Where appropriate, we compare the analogous pathways/genes in Saccharomyces cerevisiae in an attempt to highlight the evolution of the different components of the two organisms. The downstream components of these pathways, some of which may be interesting antifungal targets, are also discussed.
Figures








Similar articles
-
Signaling through protein kinases and transcriptional regulators in Candida albicans.Crit Rev Microbiol. 2003;29(3):259-75. doi: 10.1080/713610451. Crit Rev Microbiol. 2003. PMID: 14582620 Review.
-
Antagonistic interplay of Swi1 and Tup1 on filamentous growth of Candida albicans.FEMS Microbiol Lett. 2008 Aug;285(2):233-41. doi: 10.1111/j.1574-6968.2008.01236.x. Epub 2008 Jun 28. FEMS Microbiol Lett. 2008. PMID: 18564337
-
Cdc42p GTPase regulates the budded-to-hyphal-form transition and expression of hypha-specific transcripts in Candida albicans.Eukaryot Cell. 2004 Jun;3(3):724-34. doi: 10.1128/EC.3.3.724-734.2004. Eukaryot Cell. 2004. PMID: 15189993 Free PMC article.
-
N-acetylglucosamine-mediated morphological transition in Candida albicans and Candida tropicalis.Curr Genet. 2021 Apr;67(2):249-254. doi: 10.1007/s00294-020-01138-z. Epub 2021 Jan 2. Curr Genet. 2021. PMID: 33388851 Review.
-
Histidine kinase, two-component signal transduction proteins of Candida albicans and the pathogenesis of candidosis.Mycoses. 1999;42 Suppl 2:49-53. Mycoses. 1999. PMID: 10865904 Review.
Cited by
-
Molecular Mechanisms Involved in the Multicellular Growth of Ustilaginomycetes.Microorganisms. 2020 Jul 18;8(7):1072. doi: 10.3390/microorganisms8071072. Microorganisms. 2020. PMID: 32708448 Free PMC article. Review.
-
Functional control of the Candida albicans cell wall by catalytic protein kinase A subunit Tpk1.Mol Microbiol. 2012 Oct;86(2):284-302. doi: 10.1111/j.1365-2958.2012.08193.x. Epub 2012 Aug 22. Mol Microbiol. 2012. PMID: 22882910 Free PMC article.
-
Farnesol and cyclic AMP signaling effects on the hypha-to-yeast transition in Candida albicans.Eukaryot Cell. 2012 Oct;11(10):1219-25. doi: 10.1128/EC.00144-12. Epub 2012 Aug 10. Eukaryot Cell. 2012. PMID: 22886999 Free PMC article.
-
A phenotypic profile of the Candida albicans regulatory network.PLoS Genet. 2009 Dec;5(12):e1000783. doi: 10.1371/journal.pgen.1000783. Epub 2009 Dec 24. PLoS Genet. 2009. PMID: 20041210 Free PMC article.
-
Sap6, a secreted aspartyl proteinase, participates in maintenance the cell surface integrity of Candida albicans.J Biomed Sci. 2013 Dec 30;20(1):101. doi: 10.1186/1423-0127-20-101. J Biomed Sci. 2013. PMID: 24378182 Free PMC article.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases