Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2007 Sep;24(9):1772-87.
doi: 10.1007/s11095-007-9321-5. Epub 2007 Jun 8.

Blood-brain barrier transport of non-viral gene and RNAi therapeutics

Affiliations
Review

Blood-brain barrier transport of non-viral gene and RNAi therapeutics

Ruben J Boado. Pharm Res. 2007 Sep.

Abstract

The development of gene- and RNA interference (RNAi)-based therapeutics represents a challenge for the drug delivery field. The global brain distribution of DNA genes, as well as the targeting of specific regions of the brain, is even more complicated because conventional delivery systems, i.e. viruses, have poor diffusion in brain when injected in situ and do not cross the blood-brain barrier (BBB), which is only permeable to lipophilic molecules of less than 400 Da. Recent advances in the "Trojan Horse Liposome" (THL) technology applied to the transvascular non-viral gene therapy of brain disorders presents a promising solution to the DNA/RNAi delivery obstacle. The THL is comprised of immunoliposomes carrying either a gene for protein replacement or small hairpin RNA (shRNA) expression plasmids for RNAi effect, respectively. The THL is engineered with known lipids containing polyethyleneglycol (PEG), which stabilizes its structure in vivo in circulation. The tissue target specificity of THL is given by conjugation of approximately 1% of the PEG residues to peptidomimetic monoclonal antibodies (MAb) that bind to specific endogenous receptors (i.e. insulin and transferrin receptors) located on both the BBB and the brain cellular membranes, respectively. These MAbs mediate (a) receptor-mediated transcytosis of the THL complex through the BBB, (b) endocytosis into brain cells and (c) transport to the brain cell nuclear compartment. The present review presents an overview of the THL technology and its current application to gene therapy and RNAi, including experimental models of Parkinson's disease and brain tumors.

PubMed Disclaimer

References

    1. Exp Cell Res. 2001 Aug 15;268(2):262-73 - PubMed
    1. Pharm Res. 2001 Aug;18(8):1091-5 - PubMed
    1. Protein Expr Purif. 1999 Nov;17(2):183-202 - PubMed
    1. Gene Ther. 1998 Jun;5(6):809-19 - PubMed
    1. Science. 2002 Dec 20;298(5602):2296-7 - PubMed

LinkOut - more resources