Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Sep;102(6):1771-1782.
doi: 10.1111/j.1471-4159.2007.04663.x. Epub 2007 Jun 6.

Prostaglandin synthesis in rat brain astrocytes is under the control of the n-3 docosahexaenoic acid, released by group VIB calcium-independent phospholipase A2

Affiliations
Free article

Prostaglandin synthesis in rat brain astrocytes is under the control of the n-3 docosahexaenoic acid, released by group VIB calcium-independent phospholipase A2

Mikhail Strokin et al. J Neurochem. 2007 Sep.
Free article

Abstract

In the current study, we reveal that in astrocytes the VIB Ca(2+)-independent phospholipase A(2) is the enzyme responsible for the release of docosahexaenoic acid (22:6n-3). After pharmacological inhibition and siRNA silencing of VIB Ca(2+)-independent phospholipase A(2), docosahexaenoic acid release was strongly suppressed in astrocytes, which were acutely stimulated (30 min) with ATP and glutamate or after prolonged (6 h) stimulation with the endotoxin lipopolysaccharide. Docosahexaenoic acid release proceeds simultaneously with arachidonic acid (20:4n-6) release and prostaglandin liberation from astrocytes. We found that prostaglandin production is negatively controlled by endogenous docosahexaenoic acid, since pharmacological inhibition and siRNA silencing of VIB Ca(2+)-independent phospholipase A(2) significantly amplified the prostaglandin release by astrocytes stimulated with ATP, glutamate, and lipopolysaccharide. Addition of exogenous docosahexaenoic acid inhibited prostaglandin synthesis, which suggests that the negative control of prostaglandin synthesis observed here is likely due to competitive inhibition of cyclooxygenase-1/2 by free docosahexaenoic acid. Additionally, treatment of astrocytes with docosahexaenoic acid leads to the reduction in cyclooxygenase-1 expression, which also contributes to reduced prostaglandin production observed in lipopolysaccharide-stimulated cells. Thus, we identify a regulatory mechanism important for the brain, in which docosahexaenoic acid released from astrocytes by VIB Ca(2+)-independent phospholipase A(2) negatively controls prostaglandin production.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources