A novel automatic image processing algorithm for detection of hard exudates based on retinal image analysis
- PMID: 17556004
- DOI: 10.1016/j.medengphy.2007.04.010
A novel automatic image processing algorithm for detection of hard exudates based on retinal image analysis
Abstract
We present an automatic image processing algorithm to detect hard exudates. Automatic detection of hard exudates from retinal images is an important problem since hard exudates are associated with diabetic retinopathy and have been found to be one of the most prevalent earliest signs of retinopathy. The algorithm is based on Fisher's linear discriminant analysis and makes use of colour information to perform the classification of retinal exudates. We prospectively assessed the algorithm performance using a database containing 58 retinal images with variable colour, brightness, and quality. Our proposed algorithm obtained a sensitivity of 88% with a mean number of 4.83+/-4.64 false positives per image using the lesion-based performance evaluation criterion, and achieved an image-based classification accuracy of 100% (sensitivity of 100% and specificity of 100%).
Similar articles
-
Retinal image analysis based on mixture models to detect hard exudates.Med Image Anal. 2009 Aug;13(4):650-8. doi: 10.1016/j.media.2009.05.005. Epub 2009 May 28. Med Image Anal. 2009. PMID: 19539518
-
A contribution of image processing to the diagnosis of diabetic retinopathy--detection of exudates in color fundus images of the human retina.IEEE Trans Med Imaging. 2002 Oct;21(10):1236-43. doi: 10.1109/TMI.2002.806290. IEEE Trans Med Imaging. 2002. PMID: 12585705
-
Detection of hard exudates in retinal images using a radial basis function classifier.Ann Biomed Eng. 2009 Jul;37(7):1448-63. doi: 10.1007/s10439-009-9707-0. Epub 2009 May 9. Ann Biomed Eng. 2009. PMID: 19430906
-
An overview and performance evaluation of classification-based least squares trained filters.IEEE Trans Image Process. 2008 Oct;17(10):1772-82. doi: 10.1109/TIP.2008.2002162. IEEE Trans Image Process. 2008. PMID: 18784026 Review.
-
A review on exudates detection methods for diabetic retinopathy.Biomed Pharmacother. 2018 Jan;97:1454-1460. doi: 10.1016/j.biopha.2017.11.009. Epub 2017 Dec 14. Biomed Pharmacother. 2018. PMID: 29156536 Review.
Cited by
-
Automatic detection of non-perfusion areas in diabetic macular edema from fundus fluorescein angiography for decision making using deep learning.Sci Rep. 2020 Sep 15;10(1):15138. doi: 10.1038/s41598-020-71622-6. Sci Rep. 2020. PMID: 32934283 Free PMC article.
-
Computer-aided diabetic retinopathy detection using trace transforms on digital fundus images.Med Biol Eng Comput. 2014 Aug;52(8):663-72. doi: 10.1007/s11517-014-1167-5. Epub 2014 Jun 24. Med Biol Eng Comput. 2014. PMID: 24958614
-
Remote examination of exudates-impact of macular oedema.Healthc Technol Lett. 2018 May 11;5(4):118-123. doi: 10.1049/htl.2017.0026. eCollection 2018 Aug. Healthc Technol Lett. 2018. PMID: 30155263 Free PMC article.
-
Automated segmentation of hyperreflective foci in spectral domain optical coherence tomography with diabetic retinopathy.J Med Imaging (Bellingham). 2018 Jan;5(1):014002. doi: 10.1117/1.JMI.5.1.014002. Epub 2018 Feb 6. J Med Imaging (Bellingham). 2018. PMID: 29430477 Free PMC article.
-
Automated detection of diabetic retinopathy in retinal images.Indian J Ophthalmol. 2016 Jan;64(1):26-32. doi: 10.4103/0301-4738.178140. Indian J Ophthalmol. 2016. PMID: 26953020 Free PMC article. Review.
MeSH terms
LinkOut - more resources
Full Text Sources