Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Apr;20(3):424-32.
doi: 10.1016/j.neunet.2007.04.013. Epub 2007 May 3.

Learning grammatical structure with Echo State Networks

Affiliations

Learning grammatical structure with Echo State Networks

Matthew H Tong et al. Neural Netw. 2007 Apr.

Abstract

Echo State Networks (ESNs) have been shown to be effective for a number of tasks, including motor control, dynamic time series prediction, and memorizing musical sequences. However, their performance on natural language tasks has been largely unexplored until now. Simple Recurrent Networks (SRNs) have a long history in language modeling and show a striking similarity in architecture to ESNs. A comparison of SRNs and ESNs on a natural language task is therefore a natural choice for experimentation. Elman applies SRNs to a standard task in statistical NLP: predicting the next word in a corpus, given the previous words. Using a simple context-free grammar and an SRN with backpropagation through time (BPTT), Elman showed that the network was able to learn internal representations that were sensitive to linguistic processes that were useful for the prediction task. Here, using ESNs, we show that training such internal representations is unnecessary to achieve levels of performance comparable to SRNs. We also compare the processing capabilities of ESNs to bigrams and trigrams. Due to some unexpected regularities of Elman's grammar, these statistical techniques are capable of maintaining dependencies over greater distances than might be initially expected. However, we show that the memory of ESNs in this word-prediction task, although noisy, extends significantly beyond that of bigrams and trigrams, enabling ESNs to make good predictions of verb agreement at distances over which these methods operate at chance. Overall, our results indicate a surprising ability of ESNs to learn a grammar, suggesting that they form useful internal representations without learning them.

PubMed Disclaimer

Publication types

LinkOut - more resources