Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2007 Jun;32(2):103-13.

Protective and regenerative effects of the GH/IGF-I axis on the brain

Affiliations
  • PMID: 17557036
Review

Protective and regenerative effects of the GH/IGF-I axis on the brain

J Isgaard et al. Minerva Endocrinol. 2007 Jun.

Abstract

Apart from regulating somatic growth and metabolism, evidence suggest that the GH/ IGF-I axis is involved in the regulation of brain growth, development and myelination. Moreover, growth hormone (GH) and particularly IGF-I have been attributed neuroprotective effects in different in vitro and in vivo experimental models. In addition, both GH and IGF-I affect cognition and biochemistry in the adult brain. Some of the effects of GH are suggested to be mediated by circulating IGF-I, while other effects may be due to locally produced IGF-I within the brain. It is also possible that GH may act directly on the central nervous system (CNS) without involving IGF-I (either circulating or locally). Plasticity in the CNS may be viewed as changes in the functional interplay between the major cell types neurons, astrocytes and oligodendrocytes. GH and IGF-I affect all these cell types in several aspects. Apart from neuroprotective effects of GH and IGF-I in different experimental models of CNS injury, IGF-I has been found to increase progenitor cell proliferation and new neurons, oligodendrocytes, and blood vessels in the dentate gyrus of the hippocampus. In the adult cerebral cortex, it appears that only oligodendrogenesis is affected. The increase of IGF-I on endothelial cell phenotype may explain the increase in cerebral arteriole density observed after GH treatment. In the present review, different aspects of the GH/IGF-I axis effects on the brain will be discussed with particular emphasis on neuroprotection, regeneration and brain plasticity. Moreover, recent findings describing neuroprotective effects and effects on synaptic plasticity by GH secretagogues will be reviewed.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources