Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Jul;70(13):1155-66.
doi: 10.1080/15287390701252766.

Rhapontigenin from Rheum undulatum protects against oxidative-stress-induced cell damage through antioxidant activity

Affiliations

Rhapontigenin from Rheum undulatum protects against oxidative-stress-induced cell damage through antioxidant activity

Rui Zhang et al. J Toxicol Environ Health A. 2007 Jul.

Abstract

The antioxidant properties of rhapontigenin and rhaponticin isolated from Rheum undulatum were investigated. Rhapontigenin was found to scavenge intracellular reactive oxygen species (ROS), the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical, and hydrogen peroxide (H2O2). The radical scavenging effect of rhapontigenin was more effective than rhaponticin. Rhapontigenin protected against H2O2-induced membrane lipid peroxidation and cellular DNA damage, which are the main targets of oxidative stress-induced cellular damage. The radical scavenging activity of rhapontigenin protected Chinese hamster lung fibroblast (V79-4) cells exposed to H2O2 by inhibiting apoptosis. Rhapontigenin inhibited cell damage induced by serum starvation and was also found to increase the activity of catalase and its protein expression. Further, rhapontigenin increased phosphorylation of extracellular signal-regulated kinase (ERK) and inhibited the activity of activator protein 1 (AP-1), a redox-sensitive transcription factor. In summary, these results suggest that rhapontigenin protects V79-4 cells against oxidative damage by enhancing the cellular antioxidant activity and modulating cellular signal pathways.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources