Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Aug-Sep;68(16-18):2222-31.
doi: 10.1016/j.phytochem.2007.04.022. Epub 2007 Jun 7.

Substrate cycles in the central metabolism of maize root tips under hypoxia

Affiliations

Substrate cycles in the central metabolism of maize root tips under hypoxia

Ana Paula Alonso et al. Phytochemistry. 2007 Aug-Sep.

Abstract

Substrate cycles, also called "futile" cycles, are ubiquitous and lead to a net consumption of ATP which, in the normoxic maize root, have been estimated at about 50% of the total ATP produced [Alonso, A.P., Vigeolas, H., Raymond, P., Rolin, D., Dieuaide-Noubhani, M., 2005. A new substrate cycle in plants. Evidence for a high glucose-phosphate-to-glucose turnover from in vivo steady-state and pulse-labeling experiments with [(13)C] glucose and [(14)C] glucose. Plant Physiol. 138, 2220-2232]. To evaluate their role we studied the substrate cycles of maize root tips under an oxygen limitation of respiration (3% O(2)). Short-time labeling experiments with [U-(14)C]-Glc were performed to quantify the fluxes through sucrose and starch cycles of synthesis and degradation. Steady-state labeling with [1-(13)C]-Glc followed by (1)H NMR and (13)C NMR analysis of sugars and free alanine was used to quantify fluxes in the central metabolic pathways, including the Glc-P/Glc cycle and the fructose-P/triose-P cycle of glycolysis. Comparison with results previously obtained in normoxia [Alonso et al., as mentioned above] showed that 3% O(2) induced fermentation and reduced respiration, which led to a lesser amount of ATP produced. The rates of Glc consumption, glycolytic flux and all substrate cycles were lower, but the proportion of ATP consumed in the substrate cycles remained unchanged. These findings suggest that substrate cycles are not a luxury but an integral part of the organization of the plant central metabolism.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources