Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Aug;31(5):298-305.
doi: 10.1016/j.ejps.2007.04.006. Epub 2007 May 5.

Different impacts of intestinal lymphatic transport on the oral bioavailability of structurally similar synthetic lipophilic cannabinoids: dexanabinol and PRS-211,220

Affiliations

Different impacts of intestinal lymphatic transport on the oral bioavailability of structurally similar synthetic lipophilic cannabinoids: dexanabinol and PRS-211,220

Pavel Gershkovich et al. Eur J Pharm Sci. 2007 Aug.

Abstract

The aim of this article was to investigate the role of intestinal lymphatic transport in the oral bioavailability of two structurally similar synthetic lipophilic cannabinoids: dexanabinol and PRS-211,220. For this purpose, the long chain triglyceride (LCT) solubility and affinity to chylomicrons ex vivo of both cannabinoids were evaluated. Their oral bioavailability was assessed in rats following administration in a lipid-free and a LCT-based formulation. The intestinal lymphatic transport of these two molecules was also directly measured in a freely moving rat model. LCT solubility of dexanabinol and PRS-211,220 was 7.9+/-0.2 and 95.8+/-5.3mg/g, respectively. The uptake by chylomicrons was moderate (31.6+/-5.2%) and high (66.1+/-2.4%), respectively. The bioavailability of dexanabinol (37%) was not affected by LCT solution, whereas administration of PRS-211,220 in LCT improved the absolute oral bioavailability three-fold (from 13 to 35%) in comparison to the lipid-free formulation. The intestinal lymphatic transport of dexanabinol and PRS-211,220 was 7.5+/-0.8 and 60.7+/-6.8% of the absorbed dose, respectively. In conclusion, despite structural similarity and similar lipophilicity, dexanabinol and PRS-211,220 exhibited a very diverse pattern of oral absorption, and the lymphatic system played quite a different role in the oral bioavailability of these molecules. The low lymphatic transport of dexanabinol is likely driven by relatively lower affinity to chylomicrons and lower LCT solubility.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources