Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Jun;42(6):981-6.
doi: 10.1016/j.jpedsurg.2007.01.032.

Epidermal growth factor receptor-directed enterocyte proliferation does not induce Wnt pathway transcription

Affiliations

Epidermal growth factor receptor-directed enterocyte proliferation does not induce Wnt pathway transcription

Janice A Taylor et al. J Pediatr Surg. 2007 Jun.

Abstract

Background: Epidermal growth factor receptor (EGFR) stimulation enhances intestinal adaptation after massive small bowel resection (SBR), measured by taller villi, deeper crypts, and augmented enterocyte proliferation. Min mice with constitutively active beta-catenin signaling demonstrate enhanced villus growth after SBR, suggesting a role for the Wnt pathway during adaptation. Because there is crosstalk between EGFR signaling and the Wnt pathway, we hypothesized that beta-catenin is modulated by EGFR-induced enterocyte proliferation.

Methods: Rat intestinal epithelial cells were stimulated with EGF and cytoplasmic to nuclear trafficking of beta-catenin was measured. Beta-catenin-directed transcription was also tested via transfection with a TOP/FOP luciferase reporter. Downstream transcriptional target expression was measured in murine intestine after SBR.

Results: Epidermal growth factor-treated rat intestinal epithelial cells exhibited increased proliferation compared to serum-deficient cells in the face of no detectable accumulation of nuclear beta-catenin. The luciferase assay results showed minimal transcription activity in response to EGF. In vivo experiments revealed no significant difference in expression of beta-catenin targeted genes in crypt enterocytes after SBR.

Conclusions: The mechanism for EGFR-induced proliferation of enterocytes does not appear to involve a transcriptional role for beta-catenin. The effects of EGFR signaling on beta-catenin-mediated cell adhesion remain to be investigated.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources