Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2007;9(3):213.
doi: 10.1186/ar2195.

Major biological obstacles for persistent cell-based regeneration of articular cartilage

Affiliations
Review

Major biological obstacles for persistent cell-based regeneration of articular cartilage

Andre F Steinert et al. Arthritis Res Ther. 2007.

Abstract

Hyaline articular cartilage, the load-bearing tissue of the joint, has very limited repair and regeneration capacities. The lack of efficient treatment modalities for large chondral defects has motivated attempts to engineer cartilage constructs in vitro by combining cells, scaffold materials and environmental factors, including growth factors, signaling molecules, and physical influences. Despite promising experimental approaches, however, none of the current cartilage repair strategies has generated long lasting hyaline cartilage replacement tissue that meets the functional demands placed upon this tissue in vivo. The reasons for this are diverse and can ultimately result in matrix degradation, differentiation or integration insufficiencies, or loss of the transplanted cells and tissues. This article aims to systematically review the different causes that lead to these impairments, including the lack of appropriate differentiation factors, hypertrophy, senescence, apoptosis, necrosis, inflammation, and mechanical stress. The current conceptual basis of the major biological obstacles for persistent cell-based regeneration of articular cartilage is discussed, as well as future trends to overcome these limitations.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Biological obstacles associated with cell-based approaches to cartilage tissue engineering. Formation of hyaline neocartilage can be hindered due to loss of transplanted chondrogenic cells by cellular efflux, apoptosis or necrosis, differentiation insufficiencies, including fibroblastic, hypertrophic or osteogenic differentiation (red arrows), matrix destruction by mechanical, oxidative and/or inflammatory stressors (red flashes), as well as integration failures within the cartilage and/or bone compartment (green arrows) of the defect.

References

    1. Buckwalter JA, Mankin HJ. Articular cartilage repair and transplantation. Arthritis Rheum. 1998;41:1331–1342. doi: 10.1002/1529-0131(199808)41:8<1331::AID-ART2>3.0.CO;2-J. - DOI - PubMed
    1. Hunziker EB. Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthritis Cartilage. 2002;10:432–463. doi: 10.1053/joca.2002.0801. - DOI - PubMed
    1. Poole AR, Kojima T, Yasuda T, Mwale F, Kobayashi M, Laverty S. Composition and structure of articular cartilage: a template for tissue repair. Clin Orthop Relat Res. 2001;391(Suppl):S26–33. doi: 10.1097/00003086-200110001-00004. - DOI - PubMed
    1. Poole CA, Glant TT, Schofield JR. Chondrons from articular cartilage. (IV). Immunolocalization of proteoglycan epitopes in isolated canine tibial chondrons. J Histochem Cytochem. 1991;39:1175–1187. - PubMed
    1. Kirsch T, von der Mark K. Isolation of human type X collagen and immunolocalization in fetal human cartilage. Eur J Biochem. 1991;196:575–580. doi: 10.1111/j.1432-1033.1991.tb15852.x. - DOI - PubMed

Publication types