Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Jun 26;115(25):3145-55.
doi: 10.1161/CIRCULATIONAHA.107.688317. Epub 2007 Jun 11.

Mechanoelectrical feedback as novel mechanism of cardiac electrical remodeling

Affiliations

Mechanoelectrical feedback as novel mechanism of cardiac electrical remodeling

Darwin Jeyaraj et al. Circulation. .

Abstract

Background: Altered electrical activation of the heart by pacing or disease induces profound ventricular electrical remodeling (VER), manifested electrocardiographically as T-wave memory and ultimately as deleterious mechanical remodeling from heterogeneous strain. Although T-wave memory is associated with altered expression of sarcolemmal ion channels, the biophysical mechanisms responsible for triggering remodeling of cardiac ion channels are unknown.

Methods and results: To test the hypothesis that mechanoelectrical feedback triggered by regional strain is a mechanism for VER, dogs (n=6) underwent 4 weeks of ventricular pacing to induce VER. Multisegment transmural optical action potential imaging of left ventricular wedges revealed profound and selective prolongation of action potential duration in late-activated (288+/-29 ms) compared with early-activated (250+/-9 ms) myocardial segments (P<0.05), providing the first experimental evidence that amplification of repolarization gradients between segments of left ventricle is the electrophysiological basis for T-wave memory. In vivo tagged magnetic resonance imaging revealed a 2-fold and preferential increase in circumferential strain in late-activated segments of myocardium, which exactly coincided with segments undergoing VER. VER could not be attributed to structural remodeling because it occurred without any histological evidence of cellular hypertrophy.

Conclusions: The mechanism responsible for triggering remodeling of ion channel function in VER was locally enhanced circumferential strain. These data suggest a novel mechanoelectrical feedback mechanism for inducing physiological and potentially deleterious electrical heterogeneities in the heart.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources