Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Aug;69(1):89-98.
doi: 10.1016/j.chemosphere.2007.04.041. Epub 2007 Jun 12.

Effects of soil cadmium on growth, oxidative stress and antioxidant system in wheat seedlings (Triticum aestivum L.)

Affiliations

Effects of soil cadmium on growth, oxidative stress and antioxidant system in wheat seedlings (Triticum aestivum L.)

Renzhang Lin et al. Chemosphere. 2007 Aug.

Abstract

Effects of different concentrations of soil cadmium (0-33mg kg(-1)) on growth, oxidative stress, and antioxidant response of wheat seedlings (Triticum aestivum L.) were investigated using pot experiments. A slight stimulatory effect on seedling growth was observed, especially at low Cd concentrations (less than 3.3mg kg(-1)). Results of the electron paramagnetic resonance (EPR) determination showed a decrease in unstable free radical level in the leaves, followed by a significant increase with increasing Cd concentrations. Malondialdehyde (MDA) contents were significantly enhanced by a high Cd concentration. Activity levels of some antioxidant enzymes in the leaves, including superoxide dismutase (SOD, EC1.12.1.1), catalase (CAT, EC1.11.1.6), guaiacol peroxidase (GPX, EC1.11.1.7), ascorbate peroxidase (APX, EC1.11.1.11) and glutathione reductase (GR, EC1.6.4.2), did not change much at low Cd concentrations (less than 3.3mg kg(-1)), but fluctuated drastically at high Cd concentrations. GSH contents and GSH/GSSG ratios decreased at low Cd concentrations, then increased at high Cd concentrations. Wheat seedlings might overcompensate at low Cd concentrations, resulting in a low oxidative stress and a positive effect on growth. Changes in biochemical parameters would occur before any visible symptom of toxicity appeared, and the endpoint based on these parameters might be more sensitive or indicative than morphological observations in revealing the eco-toxicity of Cd. Based on the results of this study, we propose that the toxic critical value of soil Cd in inducing oxidative stress to wheat seedlings is between 3.3mg kg(-1) and 10mg kg(-1).

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources