Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Case Reports
. 2007 Sep;103(3):1082-92.
doi: 10.1152/japplphysiol.01118.2006. Epub 2007 Jun 14.

Atrophic rhinitis: a CFD study of air conditioning in the nasal cavity

Affiliations
Free article
Case Reports

Atrophic rhinitis: a CFD study of air conditioning in the nasal cavity

Guilherme J M Garcia et al. J Appl Physiol (1985). 2007 Sep.
Free article

Abstract

Atrophic rhinitis is a chronic disease of the nasal mucosa. The disease is characterized by abnormally wide nasal cavities, and its main symptoms are dryness, crusting, atrophy, fetor, and a paradoxical sensation of nasal congestion. The etiology of the disease remains unknown. Here, we propose that excessive evaporation of the mucous layer is the basis for the relentless nature of this disease. Airflow and water and heat transport were simulated using computational fluid dynamics (CFD) techniques. The nasal geometry of an atrophic rhinitis patient was acquired from computed tomography scans before and after a procedure to narrow the nasal cavity. Simulations of air conditioning in the atrophic nose were compared with similar computations performed within the nasal geometries of four healthy humans. The excessively wide cavity of the patient generated abnormal flow patterns, which led to abnormal patterns of water fluxes across the wall. Geometrically, the atrophic nose had a much lower surface area than the healthy nasal passages, which increased water fluxes per unit area. Nevertheless, the simulations indicated that the atrophic nose did not condition inspired air as effectively as the healthy geometries. These simulations of water transport in the nasal cavity are consistent with the hypothesis that excessive evaporation of mucus plays a key role in the pathophysiology of atrophic rhinitis. We conclude that the main goals of a surgery to treat atrophic rhinitis should be 1) to restore the original surface area of the nose, 2) to restore the physiological airflow distribution, and 3) to create symmetric cavities.

PubMed Disclaimer

Publication types

LinkOut - more resources