Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2007:48 Suppl 2:13-20.
doi: 10.1111/j.1528-1167.2007.01063.x.

Epileptogenesis in experimental models

Affiliations
Review

Epileptogenesis in experimental models

Asla Pitkänen et al. Epilepsia. 2007.

Abstract

Epileptogenesis refers to a phenomenon in which the brain undergoes molecular and cellular alterations after a brain-damaging insult, which increase its excitability and eventually lead to the occurrence of recurrent spontaneous seizures. Common epileptogenic factors include traumatic brain injury (TBI), stroke, and cerebral infections. Only a subpopulation of patients with any of these brain insults, however, will develop epilepsy. Thus, there are two great challenges: (1) identifying patients at risk, and (2) preventing and/or modifying the epileptogenic process. Target identification for antiepileptogenic treatments is difficult in humans because patients undergoing epileptogenesis cannot currently be identified. Animal models of epileptogenesis are therefore necessary for scientific progress. Recent advances in the development of experimental models of epileptogenesis have provided tools to investigate the molecular and cellular alterations and their temporal appearance, as well as the epilepsy phenotype after various clinically relevant epileptogenic etiologies, including TBI and stroke. Studying these models will lead to answers to critical questions such as: Do the molecular mechanisms of epileptogenesis depend on the etiology? Is the spectrum of network alterations during epileptogenesis the same after various clinically relevant etiologies? Is the temporal progression of epileptogenesis similar? Work is ongoing, and answers to these questions will facilitate the identification of molecular targets for antiepileptogenic treatments, the design of treatment paradigms, and the determination of whether data from one etiology can be extrapolated to another.

PubMed Disclaimer

MeSH terms