Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2007 Apr-Jun;32(2):103-10.

Osteoblasts and bone formation

Affiliations
  • PMID: 17572649
Free article
Review

Osteoblasts and bone formation

Joana Caetano-Lopes et al. Acta Reumatol Port. 2007 Apr-Jun.
Free article

Abstract

Bone is constantly being remodelled in a dynamic process where osteoblasts are responsible for bone formation and osteoclasts for its resorption. Osteoblasts are specialized mesenchymal cells that undergo a process of maturation where genes like core-binding factor alpha1 (Cbfa1) and osterix (Osx) play a very important role. Moreover, it was found recently that Wnt/ beta-catenin pathway plays a part on osteoblast differentiation and proliferation. In fact, mutations on some of the proteins involved in this pathway, like the low-density lipoprotein receptor related protein 5/6 (LRP5/6) lead to bone diseases. Osteoblast have also a role in regulation of bone resorption through receptor activator of nuclear factor-kappaB (RANK) ligand (RANKL), that links to its receptor, RANK, on the surface of pre-osteoblast cells, inducing their differentiation and fusion. On the other hand, osteoblasts secrete a soluble decoy receptor (osteoprotegerin, OPG) that blocks RANK/RANKL interaction by binding to RANKL and, thus, prevents osteoclast differentiation and activation. Therefore, the balance between RANKL and OPG determines the formation and activity of osteoclasts. Another factor that influences bone mass is leptin, a hormone produced by adipocytes that have a dual effect. It can act through the central nervous system and diminish osteoblasts activity, or can have an osteogenic effect by binding directly to its receptors on the surface of osteoblast cells.

PubMed Disclaimer

LinkOut - more resources