Spectral tuning of shortwave-sensitive visual pigments in vertebrates
- PMID: 17576346
- DOI: 10.1562/2006-06-27-IR-952
Spectral tuning of shortwave-sensitive visual pigments in vertebrates
Abstract
Of the four classes of vertebrate cone visual pigments, the shortwave-sensitive SWS1 class shows some of the largest shifts in lambda(max), with values ranging in different species from 390-435 nm in the violet region of the spectrum to < 360 nm in the ultraviolet. Phylogenetic evidence indicates that the ancestral pigment most probably had a lambda(max) in the UV and that shifts between violet and UV have occurred many times during evolution. In violet-sensitive (VS) pigments, the Schiff base is protonated whereas in UV-sensitive (UVS) pigments, it is almost certainly unprotonated. The generation of VS pigments in amphibia, birds and mammals from ancestral UVS pigments must involve therefore the stabilization of protonation. Similarly, stabilization must be lost in the evolution of avian UVS pigments from a VS ancestral pigment. The key residues in the opsin protein for these shifts are at sites 86 and 90, both adjacent to the Schiff base and the counterion at Glu113. In this review, the various molecular mechanisms for the UV and violet shifts in the different vertebrate groups are presented and the changes in the opsin protein that are responsible for the spectral shifts are discussed in the context of the structural model of bovine rhodopsin.
Similar articles
-
Divergent mechanisms for the tuning of shortwave sensitive visual pigments in vertebrates.Photochem Photobiol Sci. 2004 Aug;3(8):713-20. doi: 10.1039/b314693f. Epub 2004 Mar 22. Photochem Photobiol Sci. 2004. PMID: 15295625 Review.
-
The molecular mechanism for the spectral shifts between vertebrate ultraviolet- and violet-sensitive cone visual pigments.Biochem J. 2002 Oct 1;367(Pt 1):129-35. doi: 10.1042/BJ20020483. Biochem J. 2002. PMID: 12099889 Free PMC article.
-
The molecular evolution of avian ultraviolet- and violet-sensitive visual pigments.Mol Biol Evol. 2007 Aug;24(8):1843-52. doi: 10.1093/molbev/msm109. Epub 2007 Jun 7. Mol Biol Evol. 2007. PMID: 17556758
-
Avian visual pigments: characteristics, spectral tuning, and evolution.Am Nat. 2007 Jan;169 Suppl 1:S7-26. doi: 10.1086/510141. Am Nat. 2007. PMID: 19426092
-
Spectral tuning in vertebrate short wavelength-sensitive 1 (SWS1) visual pigments: can wavelength sensitivity be inferred from sequence data?J Exp Zool B Mol Dev Evol. 2014 Nov;322(7):529-39. doi: 10.1002/jez.b.22576. Epub 2014 Jun 2. J Exp Zool B Mol Dev Evol. 2014. PMID: 24890094 Review.
Cited by
-
In-silico predicted mouse melanopsins with blue spectral shifts deliver efficient subcellular signaling.Cell Commun Signal. 2024 Aug 8;22(1):394. doi: 10.1186/s12964-024-01753-0. Cell Commun Signal. 2024. PMID: 39118111 Free PMC article.
-
Cone visual pigments in two marsupial species: the fat-tailed dunnart (Sminthopsis crassicaudata) and the honey possum (Tarsipes rostratus).Proc Biol Sci. 2008 Jul 7;275(1642):1491-9. doi: 10.1098/rspb.2008.0248. Proc Biol Sci. 2008. PMID: 18426754 Free PMC article.
-
Simultaneous Expression of UV and Violet SWS1 Opsins Expands the Visual Palette in a Group of Freshwater Snakes.Mol Biol Evol. 2021 Dec 9;38(12):5225-5240. doi: 10.1093/molbev/msab285. Mol Biol Evol. 2021. PMID: 34562092 Free PMC article.
-
A Phe-rich region in short-wavelength sensitive opsins is responsible for their aggregation in the absence of 11-cis-retinal.FEBS Lett. 2013 Aug 2;587(15):2430-4. doi: 10.1016/j.febslet.2013.06.012. Epub 2013 Jun 20. FEBS Lett. 2013. PMID: 23792161 Free PMC article.
-
Evolutionary Constraint on Visual and Nonvisual Mammalian Opsins.J Biol Rhythms. 2021 Apr;36(2):109-126. doi: 10.1177/0748730421999870. Epub 2021 Mar 25. J Biol Rhythms. 2021. PMID: 33765865 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous