Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2007 Jul;3(7):539-46.
doi: 10.1038/ncpendmet0531.

Mechanisms of disease: the developmental origins of disease and the role of the epigenotype

Affiliations
Review

Mechanisms of disease: the developmental origins of disease and the role of the epigenotype

Susan E Ozanne et al. Nat Clin Pract Endocrinol Metab. 2007 Jul.

Abstract

There is accumulating evidence that many chronic diseases such as type 2 diabetes and coronary heart disease might originate during early life. This evidence gives rise to the developmental origins of disease hypothesis, and is supported by epidemiological data in humans and experimental animal models. A perturbed environment in early life is thought to elicit a range of physiological and cellular adaptive responses in key organ systems. These adaptive changes result in permanent alterations and might lead to pathology in later life. Aging organs and cells seem therefore to retain a 'memory' of their fetal history and adaptive responses. The mechanisms underlying the developmental origins of disease remain poorly defined. Epigenetic tagging of genes, such as DNA methylation and histone modification, controls the function of the genome at different levels and maintains cellular memory after many cellular divisions; importantly, tagging can be modulated by the environment and is involved in onset of diseases such as cancer. Here we review the evidence for the developmental origins of disease and discuss the role of the epigenotype as a contributing mechanism. Environmentally induced changes in the epigenotype might be key primary events in the developmental origins of disease, with important clinical implications.

PubMed Disclaimer

Publication types

MeSH terms