Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2007:45:205-25.
doi: 10.1007/978-3-540-69161-7_9.

Asymmetric stem cell division in development and cancer

Affiliations
Review

Asymmetric stem cell division in development and cancer

Emmanuel Caussinus et al. Prog Mol Subcell Biol. 2007.

Abstract

Asymmetric stem cell division leads to another stem cell via self-renewal, and a second cell type which can be either a differentiating progenitor or a postmitotic cell. The regulation of this balanced process is mainly achieved by polarization of the stem cell along its apical-basal axis and the basal localization and asymmetric segregation of cell fate determinants solely to the differentiating cell. It has long been speculated that disturbance of this process can induce a cancer-like state. Recent molecular genetic evidence in Drosophila melanogaster suggests that impaired polarity formation in neuroblast stem cells results in symmetric stem cell divisions, whereas defects in progenitor cell differentiation leads to mutant cells that are unable to differentiate but rather continue to proliferate. In both cases, the net result is unrestrained self-renewal of mutant stem cells, eventually leading to hyperproliferation and malignant neoplastic tissue formation. Thus, deregulated stem cells can play a pivotal role in Drosophila tumor formation. Moreover, recent evidence suggests that so-called cancer stem cells may drive the growth and metastasis of human tumors too. Indeed, cancer stem cells have already been identified in leukemia, and in solid tumors of the breast and brain. In addition, inappropriate activation of pathways promoting the self-renewal of somatic stem cells including defects in asymmetric cell division has been shown to cause neoplastic proliferation and cancer formation. Taken together, these data indicate that evolutionary conserved mechanisms regulate stem and progenitor cell self-renewal and tumor suppression via asymmetric cell division control.

PubMed Disclaimer

Publication types

LinkOut - more resources