Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Oct;103(1):216-28.
doi: 10.1111/j.1471-4159.2007.04704.x. Epub 2007 Jun 22.

High intracellular concentrations of amyloid-beta block nuclear translocation of phosphorylated CREB

Affiliations
Free article

High intracellular concentrations of amyloid-beta block nuclear translocation of phosphorylated CREB

D N Arvanitis et al. J Neurochem. 2007 Oct.
Free article

Abstract

The beta-amyloid peptide (Abeta) is considered responsible for the pathogenesis of Alzheimer's disease. Despite the magnitude of reports describing a neurotoxic role of extracellular Abeta, the role for intracellular Abeta (iAbeta) has not been elucidated. We previously demonstrated that in rat pheochromocytoma cells expression of moderate levels of Abeta results in the up-regulation of phospho-extracellular signal-regulated kinases (ERK1)/2 along with an elevation of cyclic AMP-response element (CRE)-regulated gene expression; however, the effect of high intracellular levels of Abeta were not examined. Towards this goal we generated constructs that endogenously produce different expression levels of iAbeta in a human cell line. We show a bimodal response to Abeta in a neural human cell line. A moderate increase of endogenous Abeta up-regulates certain cyclic AMP-response element-binding protein (CREB) responsive genes such as presenilin 1, presenilin 2, brain-derived neurotrophic factor, and mRNA and protein levels by CREB activation and Synapsin 1 nuclear translocation. On the other hand, high-loads of iAbeta resulted in sustained hyper-phosphorylation of CREB that did not translocate to the nucleus and did not stimulate activation of CRE-regulated gene expression. Our study suggests that variations in levels of iAbeta could influence signaling mechanisms that lead to phosphorylation of CREB, its nuclear translocation and CRE-regulated genes involved in production of Abeta and synaptic plasticity in opposite directions.

PubMed Disclaimer

Similar articles

Cited by

Publication types

Substances

LinkOut - more resources