Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Oct;86(1):91-113.
doi: 10.1016/0034-5687(91)90042-h.

Intracellular acid-base responses to environmental hyperoxia and normoxic recovery in rainbow trout

Affiliations

Intracellular acid-base responses to environmental hyperoxia and normoxic recovery in rainbow trout

C M Wood et al. Respir Physiol. 1991 Oct.

Abstract

Exposure of rainbow trout to environmental hyperoxia (PIO2 approximately 530 Torr) resulted in an extracellular respiratory acidosis which was fully compensated by 72 h; return to normoxia (PIO2 approximately 145 Torr) at this time induced a metabolic alkalosis which was corrected by 24 h. Intracellular pHi ([14C]DMO method), fluid volumes [3H]PEG-4000 method), and electrolytes were monitored. Environmental hypercapnia (PICO2 approximately 6.5 Torr) was employed to confirm that intracellular responses were specific to respiratory acidosis. Gill pHi did not change during respiratory acidosis despite a very low non-HCO3- buffer capacity, but gill ICFV decreased markedly. A large loss of gill intracellular [Cl-]i in excess of [Na+]i, combined with a substantial gain in [K+]i, contributed to gill pHi regulation by raising branchial [SID]i. In weakly buffered brain tissue, active adjustment of pHi started within 3 h, but two well buffered tissues, RBC and white muscle, exhibited compounding metabolic acidoses during the first 12-24 h. The muscle response was associated with small increases in ICFV and [Cl-]i, and a large decrease in [K+]i which reduced muscle [SID]i. We hypothesize that this initial export of K+ and basic equivalents served to regulate pH in more critical compartments (e.g. gills, brain) at the expense of muscle acidosis. By 48 h, pHi restoration in all tissues was complete, in advance of pHe regulation (72 h). Return to normoxia at 72 h elevated muscle, brain, and gill pHi, but there was no evidence of a comparable 'altruistic' role of muscle during this metabolic alkalosis. Regulation of pHi was complete by 24 h recovery, accompanied by partial or complete restoration of intracellular ions and fluid volumes.

PubMed Disclaimer

Similar articles

Cited by

Publication types