Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Sep;51(9):3089-95.
doi: 10.1128/AAC.00218-07. Epub 2007 Jun 25.

Interactions of ceftobiprole with beta-lactamases from molecular classes A to D

Affiliations

Interactions of ceftobiprole with beta-lactamases from molecular classes A to D

Anne Marie Queenan et al. Antimicrob Agents Chemother. 2007 Sep.

Abstract

The interactions of ceftobiprole with purified beta-lactamases from molecular classes A, B, C, and D were determined and compared with those of benzylpenicillin, cephaloridine, cefepime, and ceftazidime. Enzymes were selected from functional groups 1, 2a, 2b, 2be, 2d, 2e, and 3 to represent beta-lactamases from organisms within the antibacterial spectrum of ceftobiprole. Ceftobiprole was refractory to hydrolysis by the common staphylococcal PC1 beta-lactamase, the class A TEM-1 beta-lactamase, and the class C AmpC beta-lactamase but was labile to hydrolysis by class B, class D, and class A extended-spectrum beta-lactamases. Cefepime and ceftazidime followed similar patterns. In most cases, the hydrolytic stability of a substrate correlated with the MIC for the producing organism. Ceftobiprole and cefepime generally had lower MICs than ceftazidime for AmpC-producing organisms, particularly AmpC-overexpressing Enterobacter cloacae organisms. However, all three cephalosporins were hydrolyzed very slowly by AmpC cephalosporinases, suggesting that factors other than beta-lactamase stability contribute to lower ceftobiprole and cefepime MICs against many members of the family Enterobacteriaceae.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Alvarez, M., J. H. Tran, N. Chow, and G. A. Jacoby. 2004. Epidemiology of conjugative plasmid-mediated AmpC β-lactamases in the United States. Antimicrob. Agents Chemother. 48:533-537. - PMC - PubMed
    1. Ambler, R. P. 1975. The amino acid sequence of Staphylococcus aureus penicillinase. Biochem. J. 151:197-218. - PMC - PubMed
    1. Bogdanovich, T., L. M. Ednie, S. Shapiro, and P. C. Appelbaum. 2005. Antistaphylococcal activity of ceftobiprole, a new broad-spectrum cephalosporin. Antimicrob. Agents Chemother. 49:4210-4219. - PMC - PubMed
    1. Bradford, P. A. 2001. Extended-spectrum β-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin. Microbiol. Rev. 14:933-951. - PMC - PubMed
    1. Bradford, P. A., S. Bratu, C. Urban, M. Visalli, N. Mariano, D. Landman, J. J. Rahal, S. Brooks, S. Cebular, and J. Quale. 2004. Emergence of carbapenem-resistant Klebsiella species possessing the class A carbapenem-hydrolyzing KPC-2 and inhibitor-resistant TEM-30 β-lactamases in New York City. Clin. Infect. Dis. 39:55-60. - PubMed