Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Jun;121(3):515-26.
doi: 10.1037/0735-7044.121.3.515.

Medial prefrontal cortex lesions in the female rat affect sexual and maternal behavior and their sequential organization

Affiliations

Medial prefrontal cortex lesions in the female rat affect sexual and maternal behavior and their sequential organization

Veronica M Afonso et al. Behav Neurosci. 2007 Jun.

Abstract

Temporal sequences of sexual and maternal behaviors in female rats and their correlation with each other and with performance on a sensory-motor gating response inhibition task assessed by prepulse inhibition (PPI) were investigated following medial prefrontal cortex (mPFC) lesions. Following excitotoxic mPFC (n = 10) or sham (n = 9) lesions, sexual behaviors across the ovarian cycle were scored. After mating and parturition, maternal interactions were scored until pups reached postnatal Day 10. After resumption of the ovarian cycle, the female rats were tested for PPI. Compared with sham lesions, mPFC lesions impaired proceptive behaviors and some maternal behaviors (e.g., pup retrieval, pup licking) but did not affect others (e.g., nest building, pup mouthing). Lesions disrupted temporal sequences of solicitations (number of male orientations followed, within 4 s, by a level change) and pup retrievals (number of pup retrievals followed, within 5 s, by another retrieval). These sequential behavior patterns were significantly correlated with each other and with PPI. However, when PPI effects were partialled out, group differences were less strong, but persisted. This study demonstrated that mPFC manipulations affect actions rich in sequential structure in response to biologically relevant stimuli.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources