Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Jul;51(1):63-9.
doi: 10.1111/j.1365-2559.2007.02726.x.

The molecular causes of low ATM protein expression in breast carcinoma; promoter methylation and levels of the catalytic subunit of DNA-dependent protein kinase

Affiliations

The molecular causes of low ATM protein expression in breast carcinoma; promoter methylation and levels of the catalytic subunit of DNA-dependent protein kinase

I Treilleux et al. Histopathology. 2007 Jul.

Abstract

Aims: To investigate whether aberrant methylation of the ATM promoter or loss of the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) may be the underlying causes of reduced ATM protein levels often seen in breast tumours.

Methods and results: Methylation-specific polymerase chain reaction was used to determine the ATM promoter status and DNA-PKcs levels were measured by immunohistochemistry. None of the 74 invasive carcinomas (ICs) studied showed ATM promoter hypermethylation, whereas promoter methylation of CDKN2A/p16 (1.8%) and GSTP1 (15.8%) was detected. Of 92 ICs examined, 68 had reduced DNA-PKcs levels, supporting previous findings that alterations in double-strand break repair are associated with breast cancer pathogenesis. Although no association was found between the DNA-PKcs and ATM scores for the series of 92 tissues and 22/24 tissues with normal DNA-PKcs had reduced ATM, 29 tumours showed low expression of both DNA-PKcs and ATM compared with normal tissues.

Conclusions: No evidence was found that the reduction in ATM protein levels seen in breast carcinoma is the result of epigenetic silencing. However, cross-regulation between DNA-PKcs and ATM may be a possible cause in a subset of tumours and warrants further investigation.

PubMed Disclaimer

Publication types

MeSH terms

Substances