Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Jul;10(7):564-73.
doi: 10.1111/j.1463-1326.2007.00749.x. Epub 2007 Jun 26.

Pioglitazone attenuates fatty acid-induced oxidative stress and apoptosis in pancreatic beta-cells

Affiliations

Pioglitazone attenuates fatty acid-induced oxidative stress and apoptosis in pancreatic beta-cells

Y Saitoh et al. Diabetes Obes Metab. 2008 Jul.

Abstract

Aims: Thiazolidinediones (TZDs), ligands for peroxisome proliferator-activated receptor gamma, are antidiabetic agents that improve hyperglycemia by decreasing insulin resistance in obese diabetic animal models and patients with type 2 diabetes. We have studied whether pioglitazone, a TZD, can exert a direct effect against pancreatic beta-cell lipoapoptosis.

Methods: MIN6 cells were cultured in medium containing either 5.6 (low glucose) or 25 mM glucose (high glucose) in the presence or absence of 0.5 mM palmitate for 48 h. We examined the effect of 10 microM pioglitazone on MIN6 cells on glucose-stimulated insulin secretion, cellular ATP, uncoupling protein-2 (UCP-2) mRNA expression, intracellular triglyceride content, reactive oxygen species production, the number of apoptotic cells and nuclear factor-kappaB (NF-kappaB) activity.

Results: Pioglitazone recovered partly impaired glucose-stimulated insulin secretion and cellular ATP in MIN6 cell exposed to high glucose with 0.5 mM palmitate. Pioglitazone suppressed intracellular triglyceride accumulation in cells exposed to high glucose with 0.5 mM palmitate. Palmitate-induced upregulation of UCP-2 mRNA levels was suppressed by pioglitazone in a dose-dependent manner. Pioglitazone decreased palmitate-induced reactive oxygen species production in MIN6 cells by 24% and in mouse islet cells by 53%. Pioglitazone also decreased palmitate-induced NF-kappaB activity by 40% and protected beta-cells from palmitate-induced apoptosis by 22% in MIN6 cell.

Conclusions: Pioglitazone attenuated fatty acid-induced oxidative stress and apoptosis in pancreatic beta-cells. TZDs might be used as a mean for maintaining beta-cell survival and preserving capacity of insulin secretion in patients with diabetes mellitus.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources