Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2007 Feb 15;41(4):1378-83.
doi: 10.1021/es062165z.

Bioremediation of 2,4,6-trinitrotoluene under field conditions

Affiliations
Comparative Study

Bioremediation of 2,4,6-trinitrotoluene under field conditions

Pieter Van Dillewijn et al. Environ Sci Technol. .

Abstract

In situ bioremediation of the nitroaromatic explosive 2,4,6-trinitrotoluene (TNT) provides a cost-effective alternative for cleaning up contaminated sites. Here we compare the effectiveness of several bioremediation techniques: natural attenuation, bioaugmentation with TNT-degrading Pseudomonas putida JLR11, phytoremediation with maize (Zea mays L.) and broad beans (Vicia faba L.), and rhizoremediation with maize and broad beans inoculated with P. putida JLR11. Experiments in spiked hydroponic medium demonstrated that inoculation with bacteria did not affect TNT levels. On the other hand, axenic plants were able to remove 32% to 38% of the TNT from the medium. However, when plants were inoculated with bacteria,TNT disappeared to an even greater extent (80% to 88%), a result that advocates a role for P. putida JLR11 in rhizoremediation. In field experiments neither natural attenuation nor bioaugmentation with P. putida JLR11 affected TNT levels to a significant degree. However, the extractable TNT content in rhizosphere soil associated to maize roots decreased by more than 96% in 60 days regardless of inoculation. This indicates that under these field conditions, the effect of phytoremediation by maize overshadowed any effect of rhizoremediation by P. putida JLR11.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources