Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Aug 31;282(35):25464-74.
doi: 10.1074/jbc.M703663200. Epub 2007 Jun 26.

siRNA screening of the kinome identifies ULK1 as a multidomain modulator of autophagy

Affiliations
Free article

siRNA screening of the kinome identifies ULK1 as a multidomain modulator of autophagy

Edmond Y W Chan et al. J Biol Chem. .
Free article

Abstract

Autophagy is a vital response to nutrient starvation. Here, we screened a kinase-specific siRNA library using an autophagy assay in human embryonic kidney 293 cells that measures lipidation of the marker protein GFP-LC3 following amino acid starvation. This screen identified ULK1 in addition to other novel candidates that could be confirmed with multiple siRNAs. Knockdown of ULK1, but not the related kinase ULK2, inhibited the autophagic response. Also, ULK1 knockdown inhibited rapamycin-induced autophagy consistent with a role downstream of mTOR. Overexpression of ULK1 inhibited autophagy and this inhibition was independent of its kinase activity. Deletion of the PDZ domain-binding Val-Tyr-Ala motif at the ULK1 C terminus generated a more potent dominant-negative protein. Further deletions revealed that the minimal ULK1 dominant-negative region could be mapped to residues 1-351. Full-length ULK1 localized to cytoplasmic structures, some of which were GFP-LC3-positive, and this localization required the conserved C-terminal domain. In contrast, ULK1-(1-351) was diffuse in the cytoplasm. These experiments reveal at least two domains in ULK1 which likely function via unique sets of effectors to regulate autophagy.

PubMed Disclaimer

MeSH terms

LinkOut - more resources