Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Aug;134(15):2761-9.
doi: 10.1242/dev.000141. Epub 2007 Jun 27.

Foxa1 and Foxa2 regulate multiple phases of midbrain dopaminergic neuron development in a dosage-dependent manner

Affiliations

Foxa1 and Foxa2 regulate multiple phases of midbrain dopaminergic neuron development in a dosage-dependent manner

Anna L M Ferri et al. Development. 2007 Aug.

Abstract

The role of transcription factors in regulating the development of midbrain dopaminergic (mDA) neurons is intensively studied owing to the involvement of these neurons in diverse neurological disorders. Here we demonstrate novel roles for the forkhead/winged helix transcription factors Foxa1 and Foxa2 in the specification and differentiation of mDA neurons by analysing the phenotype of Foxa1 and Foxa2 single- and double-mutant mouse embryos. During specification, Foxa1 and Foxa2 regulate the extent of neurogenesis in mDA progenitors by positively regulating Ngn2 (Neurog2) expression. Subsequently, Foxa1 and Foxa2 regulate the expression of Nurr1 (Nr4a2) and engrailed 1 in immature neurons and the expression of aromatic l-amino acid decarboxylase and tyrosine hydroxylase in mature neurons during early and late differentiation of midbrain dopaminergic neurons. Interestingly, genetic evidence indicates that these functions require different gene dosages of Foxa1 and Foxa2. Altogether, our results demonstrate that Foxa1 and Foxa2 regulate multiple phases of midbrain dopaminergic neuron development in a dosage-dependent manner.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms