Severe acute respiratory syndrome coronavirus ORF6 antagonizes STAT1 function by sequestering nuclear import factors on the rough endoplasmic reticulum/Golgi membrane
- PMID: 17596301
- PMCID: PMC2045396
- DOI: 10.1128/JVI.01012-07
Severe acute respiratory syndrome coronavirus ORF6 antagonizes STAT1 function by sequestering nuclear import factors on the rough endoplasmic reticulum/Golgi membrane
Abstract
The host innate immune response is an important deterrent of severe viral infection in humans and animals. Nuclear import factors function as key gatekeepers that regulate the transport of innate immune regulatory cargo to the nucleus of cells to activate the antiviral response. Using severe acute respiratory syndrome coronavirus (SARS-CoV) as a model, we demonstrate that SARS-COV ORF6 protein is localized to the endoplasmic reticulum (ER)/Golgi membrane in infected cells, where it binds to and disrupts nuclear import complex formation by tethering karyopherin alpha 2 and karyopherin beta 1 to the membrane. Retention of import factors at the ER/Golgi membrane leads to a loss of STAT1 transport into the nucleus in response to interferon signaling, thus blocking the expression of STAT1-activated genes that establish an antiviral state. We mapped the region of ORF6, which binds karyopherin alpha 2, to the C terminus of ORF6 and show that mutations in the C terminus no longer bind karyopherin alpha 2 or block the nuclear import of STAT1. We also show that N-terminal deletions of karyopherin alpha 2 that no longer bind to karyopherin beta 1 still retain ORF6 binding activity but no longer block STAT1 nuclear import. Recombinant SARS-CoV lacking ORF6 did not tether karyopherin alpha 2 to the ER/Golgi membrane and allowed the import of the STAT1 complex into the nucleus. We discuss the likely implications of these data on SARS-CoV replication and pathogenesis.
Figures









Similar articles
-
SARS-CoV-2 Orf6 hijacks Nup98 to block STAT nuclear import and antagonize interferon signaling.Proc Natl Acad Sci U S A. 2020 Nov 10;117(45):28344-28354. doi: 10.1073/pnas.2016650117. Epub 2020 Oct 23. Proc Natl Acad Sci U S A. 2020. PMID: 33097660 Free PMC article.
-
Release of severe acute respiratory syndrome coronavirus nuclear import block enhances host transcription in human lung cells.J Virol. 2013 Apr;87(7):3885-902. doi: 10.1128/JVI.02520-12. Epub 2013 Jan 30. J Virol. 2013. PMID: 23365422 Free PMC article.
-
Ebolavirus VP24 binding to karyopherins is required for inhibition of interferon signaling.J Virol. 2010 Jan;84(2):1169-75. doi: 10.1128/JVI.01372-09. Epub 2009 Nov 4. J Virol. 2010. PMID: 19889762 Free PMC article.
-
Nuclear import by karyopherin-βs: recognition and inhibition.Biochim Biophys Acta. 2011 Sep;1813(9):1593-606. doi: 10.1016/j.bbamcr.2010.10.014. Epub 2010 Oct 26. Biochim Biophys Acta. 2011. PMID: 21029754 Free PMC article. Review.
-
Viral Targeting of Importin Alpha-Mediated Nuclear Import to Block Innate Immunity.Cells. 2023 Dec 29;13(1):71. doi: 10.3390/cells13010071. Cells. 2023. PMID: 38201275 Free PMC article. Review.
Cited by
-
Discovery and Genomic Characterization of a 382-Nucleotide Deletion in ORF7b and ORF8 during the Early Evolution of SARS-CoV-2.mBio. 2020 Jul 21;11(4):e01610-20. doi: 10.1128/mBio.01610-20. mBio. 2020. PMID: 32694143 Free PMC article.
-
SARS-CoV-2 variant spike and accessory gene mutations alter pathogenesis.Proc Natl Acad Sci U S A. 2022 Sep 13;119(37):e2204717119. doi: 10.1073/pnas.2204717119. Epub 2022 Aug 30. Proc Natl Acad Sci U S A. 2022. PMID: 36040867 Free PMC article.
-
COVID-19 therapy: What weapons do we bring into battle?Bioorg Med Chem. 2020 Dec 1;28(23):115757. doi: 10.1016/j.bmc.2020.115757. Epub 2020 Sep 10. Bioorg Med Chem. 2020. PMID: 32992245 Free PMC article.
-
Porcine reproductive and respiratory syndrome virus Nsp1β inhibits interferon-activated JAK/STAT signal transduction by inducing karyopherin-α1 degradation.J Virol. 2013 May;87(9):5219-28. doi: 10.1128/JVI.02643-12. Epub 2013 Feb 28. J Virol. 2013. PMID: 23449802 Free PMC article.
-
Understanding genomic diversity, pan-genome, and evolution of SARS-CoV-2.PeerJ. 2020 Jul 17;8:e9576. doi: 10.7717/peerj.9576. eCollection 2020. PeerJ. 2020. PMID: 32742815 Free PMC article.
References
-
- Booth, C. M., L. M. Matukas, G. A. Tomlinson, A. R. Rachlis, D. B. Rose, H. A. Dwosh, S. L. Walmsley, T. Mazzulli, M. Avendano, P. Derkach, I. E. Ephtimios, I. Kitai, B. D. Mederski, S. B. Shadowitz, W. L. Gold, L. A. Hawryluck, E. Rea, J. S. Chenkin, D. W. Cescon, S. M. Poutanen, and A. S. Detsky. 2003. Clinical features and short-term outcomes of 144 patients with SARS in the greater Toronto area. JAMA 289:2801-2809. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases
Research Materials
Miscellaneous