Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Sep;45(9):2770-8.
doi: 10.1128/JCM.00360-07. Epub 2007 Jun 27.

Reclassification of phenotypically identified staphylococcus intermedius strains

Affiliations

Reclassification of phenotypically identified staphylococcus intermedius strains

Takashi Sasaki et al. J Clin Microbiol. 2007 Sep.

Abstract

To reclassify phenotypically identified Staphylococcus intermedius strains, which might include true S. intermedius strains and novel species such as Staphylococcus pseudintermedius and Staphylococcus delphini, we analyzed molecular phylogenies and phenotypic characteristics of 117 S. intermedius group (SIG) strains tentatively identified as being S. intermedius by the Rapid ID32 Staph assay. From phylogenetic analyses of sodA and hsp60 sequences, the SIG strains were divided into three clusters, which belonged to S. pseudintermedius LMG 22219(T), S. intermedius ATCC 29663(T), and S. delphini LMG 22190(T). All the SIG strains from dogs, cats, and humans were identified as being S. pseudintermedius. The wild pigeon strains, except one, were identified as being S. intermedius, and strains from all domestic pigeons, one wild pigeon, horses, and a mink were identified as being S. delphini. In addition, a phylogenetic analysis of nuc genes revealed that S. delphini strains were divided into two clusters: one was the cluster (S. delphini group A) that belonged to S. delphini LMG 22190(T), and the other was the cluster (S. delphini group B) that was more related to S. pseudintermedius LMG 22219(T) than S. delphini LMG 22190(T). The DNA-DNA hybridization results showed that S. delphini group B strains were distinguished from S. delphini group A, S. intermedius, and S. pseudintermedius strains. S. intermedius is distinguishable from S. pseudintermedius or S. delphini by positive arginine dihydrolase and acid production from beta-gentiobiose and d-mannitol. However, phenotypical characteristics to differentiate S. delphini group A, S. delphini group B, and S. pseudintermedius were not found. In conclusion, SIG strains were reclassified into four clusters with three established and one probably novel species.

PubMed Disclaimer

Figures

FIG. 1.
FIG. 1.
Phylogenetic tree (unrooted) based on partial sodA gene sequences of SIG strains used in the present study. The tree was constructed by the neighbor-joining method using CLUSTAL X. It is unknown whether S. intermedius ATCC 29663T is derived from a wild or domestic pigeon.
FIG. 2.
FIG. 2.
Phylogenetic tree (unrooted) based on partial hsp60 gene sequences of SIG strains used in the present study. The tree was constructed by the neighbor-joining method using CLUSTAL X. It is unknown whether S. intermedius ATCC 29663T is derived from a wild or domestic pigeon.
FIG. 3.
FIG. 3.
Phylogenetic tree (unrooted) based on partial nuc gene sequences of SIG strains used in the present study. The tree was constructed by the neighbor-joining method using CLUSTAL X. It is unknown whether S. intermedius ATCC 29663T is derived from a wild or domestic pigeon.

Similar articles

Cited by

References

    1. Aarestrup, F. M. 2001. Comparative ribotyping of Staphylococcus intermedius isolated from members of the Canoidea gives possible evidence for host-specificity and co-evolution of bacteria and hosts. Int. J. Syst. Evol. Microbiol. 51:1343-1347. - PubMed
    1. Becker, K., C. von Eiff, B. Keller, M. Bruck, J. Etienne, and G. Peters. 2005. Thermonuclease gene as a target for specific identification of Staphylococcus intermedius isolates: use of a PCR-DNA enzyme immunoassay. Diagn. Microbiol. Infect. Dis. 51:237-244. - PubMed
    1. Beiberstein, E. L., S. S. Jang, and D. C. Hirsh. 1984. Species distribution of coagulase-positive staphylococci in animals. J. Clin. Microbiol. 19:610-615. - PMC - PubMed
    1. Berke, A., and R. C. Tilton. 1986. Evaluation of rapid coagulase methods for the identification of Staphylococcus aureus. J. Clin. Microbiol. 23:916-919. - PMC - PubMed
    1. Bes, M., S. L. Saidi, F. Becharnia, H. Meugnier, F. Vandenesch, J. Etienne, and J. Freney. 2002. Population diversity of Staphylococcus intermedius isolates from various host species: typing by 16S-23S intergenic ribosomal DNA spacer polymorphism analysis. J. Clin. Microbiol. 40:2275-2277. - PMC - PubMed

Publication types

MeSH terms

LinkOut - more resources