Activity- and use-dependent plasticity of the developing corticospinal system
- PMID: 17599407
- PMCID: PMC2769920
- DOI: 10.1016/j.neubiorev.2007.04.017
Activity- and use-dependent plasticity of the developing corticospinal system
Abstract
The corticospinal (CS) system, critical for controlling skilled movements, develops during the late prenatal and early postnatal periods in all species examined. In the cat, there is a sequence of development of the mature pattern of terminations of CS tract axons in the spinal gray matter, followed by motor map development of the primary motor cortex. Skilled limb movements begin to be expressed as the map develops. Development of the proper connections between CS axons and spinal neurons in cats depends on CS neural activity and motor behavioral experience during a critical postnatal period. Reversible CS inactivation or preventing limb use produces an aberrant distribution of CS axon terminations and impairs visually guided movements. This altered pattern of CS connections after inactivation in cats resembles the aberrant pattern of motor responses evoked by transcranial magnetic stimulation in hemiplegic cerebral palsy patients. Left untreated in the cat, these impairments do not resolve. We have found that activity-dependent processes can be harnessed in cats to reestablish normal CS connections and function. This finding suggests that aspects of normal CS connectivity and function might some day be restored in hemiplegic cerebral palsy.
Figures





Similar articles
-
Motor Cortex Activity Organizes the Developing Rubrospinal System.J Neurosci. 2015 Sep 30;35(39):13363-74. doi: 10.1523/JNEUROSCI.1719-15.2015. J Neurosci. 2015. PMID: 26424884 Free PMC article.
-
Bilateral activity-dependent interactions in the developing corticospinal system.J Neurosci. 2007 Oct 10;27(41):11083-90. doi: 10.1523/JNEUROSCI.2814-07.2007. J Neurosci. 2007. PMID: 17928450 Free PMC article.
-
Postnatal development of differential projections from the caudal and rostral motor cortex subregions.Exp Brain Res. 2000 Sep;134(2):187-98. doi: 10.1007/s002210000454. Exp Brain Res. 2000. PMID: 11037285
-
Harnessing activity-dependent plasticity to repair the damaged corticospinal tract in an animal model of cerebral palsy.Dev Med Child Neurol. 2011 Sep;53 Suppl 4(Suppl 4):9-13. doi: 10.1111/j.1469-8749.2011.04055.x. Dev Med Child Neurol. 2011. PMID: 21950387 Free PMC article. Review.
-
The corticospinal system: from development to motor control.Neuroscientist. 2005 Apr;11(2):161-73. doi: 10.1177/1073858404270843. Neuroscientist. 2005. PMID: 15746384 Review.
Cited by
-
Motor cortex electrical stimulation promotes axon outgrowth to brain stem and spinal targets that control the forelimb impaired by unilateral corticospinal injury.Eur J Neurosci. 2013 Apr;37(7):1090-102. doi: 10.1111/ejn.12119. Epub 2013 Jan 29. Eur J Neurosci. 2013. PMID: 23360401 Free PMC article.
-
Transcranial Static Magnetic Field Stimulation of the Motor Cortex in Children.Front Neurosci. 2020 May 19;14:464. doi: 10.3389/fnins.2020.00464. eCollection 2020. Front Neurosci. 2020. PMID: 32508570 Free PMC article.
-
Efficacy of baby-CIMT: study protocol for a randomised controlled trial on infants below age 12 months, with clinical signs of unilateral CP.BMC Pediatr. 2014 Jun 5;14:141. doi: 10.1186/1471-2431-14-141. BMC Pediatr. 2014. PMID: 24903062 Free PMC article. Clinical Trial.
-
Efficacy of hand-arm bimanual intensive therapy including lower extremities (HABIT-ILE) in young children with bilateral cerebral palsy (GMFCS III-IV) in a low and middle-income country: protocol of a randomised controlled trial.BMJ Open. 2021 Oct 5;11(10):e050958. doi: 10.1136/bmjopen-2021-050958. BMJ Open. 2021. PMID: 34610941 Free PMC article.
-
Corticospinal tract diffusion properties and robotic visually guided reaching in children with hemiparetic cerebral palsy.Hum Brain Mapp. 2018 Mar;39(3):1130-1144. doi: 10.1002/hbm.23904. Epub 2017 Nov 29. Hum Brain Mapp. 2018. PMID: 29193460 Free PMC article.
References
-
- Alisky JM, Swink TD, Tolbert DL. The postnatal spatial and temporal development of corticospinal projections in cats. Exp Brain Res. 1992;88:265–276. - PubMed
-
- Arlotta P, Molyneaux BJ, Chen J, Inoue J, Kominami R, Macklis JD. Neuronal subtype-specific genes that control corticospinal motor neuron development in vivo. Neuron. 2005;45:207–221. - PubMed
-
- Armand J, Kuypers HGJM. Cells of origin of crossed and uncrossed corticospinal fibers in the cat. A quantitative horseradish peroxidase study. Exp Brain Res. 1980;40:23–34. - PubMed
-
- Baldissera F, Hultborn H, Illert M. Integration in spinal neuronal systems. In: Brooks VB, editor. Handbook of Physiology, Section I: The Nervous System, Vol II, Motor Control. American Physiological Society; Bethesda: 1981. pp. 509–596.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous