Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Aug;34(8):702-7.
doi: 10.1111/j.1440-1681.2007.04626.x.

Ketanserin-induced baroreflex enhancement in spontaneously hypertensive rats depends on central 5-HT(2A) receptors

Affiliations

Ketanserin-induced baroreflex enhancement in spontaneously hypertensive rats depends on central 5-HT(2A) receptors

Fu-Ming Shen et al. Clin Exp Pharmacol Physiol. 2007 Aug.

Abstract

1. Ketanserin may influence baroreflex function by blocking 5-HT(2A) receptors and/or alpha(1)-adrenoceptors through central and/or peripheral mechanisms. 2. In the present study, we tested the hypothesis that the baroreflex sensitivity (BRS)-enhancing effects of ketanserin are mediated by central 5-HT(2A) receptors in spontaneously hypertensive rats (SHR). 3. Using a conjugate of a monoclonal antibody to the serotonin reuptake transporter (SERT) and the toxin saporin (anti-SERT-SAP), which specifically eliminates the neurons that express SERT, the effects of ketanserin (0.3 and 3.0 mg/kg, i.g.) on BRS, blood pressure (BP), heart period (HP) and blood pressure variability (BPV) were compared between conscious intact SHR and SHR pretreated with anti-SERT-SAP. 4. Immunochemistry showed that, 2 weeks after intracerebroventricular injection of the toxin, 5-HT expression was strikingly attenuated in the brain, whereas values of BRS, BPV and BP were similar to those in the sham group. In intact SHR, 0.3 mg/kg ketanserin significantly improved BRS (191% control) and reduced BPV without affecting BP; at 3.0 mg/kg, ketanserin significantly increased BRS (197% control) and decreased BPV and BP. In toxin-pretreated SHR, only the high dose of ketanserin improved BRS (132% control), neither of the ketanserin doses reduced BPV, but both significantly decreased BP. 5. We conclude that the BRS-enhancing effects of ketanserin are mediated largely by central 5-HT(2A) receptors, whereas the antihypertensive effect of ketanserin persists even after destruction of serotonergic neurons in the central nervous system.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms